Nahid Chaudhary | Experimental methods | Best Researcher Award

Mrs. Nahid Chaudhary | Experimental methods | Best Researcher Award

Indian Institute of Technology Delhi | India

Dr. Nahid Chaudhary is a highly accomplished researcher and engineer specializing in nanoelectronics and semiconductor manufacturing. With a profound focus on the growth of 2D materials and van der Waals heterostructures, he has demonstrated exceptional skills in semiconductor device fabrication and advanced characterization techniques. He is dedicated to advancing the field of nanoelectronics, with a particular emphasis on sensors, optoelectronic devices, and semiconductor industries. Dr. Chaudhary is known for his interdisciplinary collaboration and innovative contributions to device performance and reliability.

๐Ÿ‘จโ€๐ŸŽ“Profile

Google scholar

Scopus

Early Academic Pursuits ๐ŸŽ“

Dr. Chaudhary’s academic journey began with a B.Tech in Electronics and Communication Engineering from Uttar Pradesh Technical University (UPTU), where he graduated with a strong 80.04%. He further advanced his knowledge with an M.Tech in Nanoscience and Nanotechnology from Guru Gobind Singh Indraprastha University (GGSIU) with an impressive 80% score. His Ph.D. in Nanotechnology at Jamia Millia Islamia, New Delhi, focused on the synthesis and applications of 2D MoS2 nanosheets for optical sensing, supported by the Inspire Fellowship from the Department of Science and Technology (DST).

Professional Endeavors ๐Ÿ’ผ

Dr. Chaudharyโ€™s current role as a Postdoctoral Fellow at the Indian Institute of Technology (IIT), Delhi, sees him leading cutting-edge research in Molecular Beam Epitaxy (MBE) and Chemical Vapor Deposition (CVD) growth of 2D materials and van der Waals heterostructures. His professional work has directly impacted the advancement of semiconductor devices through innovative material development for sensors and optoelectronic devices. His contributions have spanned both academia and industry, where his work on next-generation sensors and semiconductor applications is highly regarded.

Contributions and Research Focus ๐Ÿ”ฌ

Dr. Chaudharyโ€™s research focuses on the development and growth of 2D materials, particularly in the fields of sensors, photodetectors, and supercapacitors. His work on van der Waals heterostructures has proven vital in enhancing device performance and reliability. Through his Molecular Beam Epitaxy (MBE) and Chemical Vapor Deposition (CVD) techniques, he has developed materials with promising applications in semiconductor devices. His key research has involved the optical sensing capabilities of MoS2 nanosheets, which have applications in biosensors and photocatalysis.

Impact and Influence ๐ŸŒ

Dr. Chaudhary’s impact in the field of nanoelectronics is evident through his innovative research and its direct application to cutting-edge technologies. His work on photodetectors and supercapacitors is transformative, addressing crucial issues in the semiconductor industry. His research into 2D materials such as MoS2 and MoTe2 has laid the groundwork for next-generation sensors and optoelectronic devices. Dr. Chaudhary is recognized for his collaborative efforts and interdisciplinary approach, contributing to the global scientific community.

Research Skills ๐Ÿ› ๏ธ

Dr. Chaudhary possesses extensive expertise in Molecular Beam Epitaxy (MBE) and Chemical Vapor Deposition (CVD), crucial for the synthesis of 2D materials. He is proficient in advanced characterization techniques including X-ray Diffraction (XRD), Atomic Force Microscopy (AFM), and UV-Vis Spectrophotometry. His skills extend to nanofabrication through maskless lithography, wet chemical etching, and photolithography, positioning him as a key innovator in semiconductor device fabrication. Additionally, his proficiency in cleanroom protocols and material processing ensures the development of high-performance devices.

Teaching Experience ๐ŸŽ

Dr. Chaudhary is deeply committed to mentoring and teaching the next generation of engineers and researchers. He actively participates in training and mentorship programs in nanoelectronics and semiconductor technology, guiding students and young researchers on cutting-edge research techniques. His contributions extend to teaching at IIT Delhi, where he engages in interdisciplinary teaching and research-based courses, offering students hands-on experience in advanced material synthesis and device fabrication.

Awards and Honors ๐Ÿ†

Dr. Chaudhary’s exceptional contributions have earned him several prestigious awards:

  • Inspire Fellowship from the Department of Science and Technology (DST) for his Ph.D. research.
  • Best Poster Award at ETAMS 2020 for his work on MoS2 Nanosheets for photodetector applications.
  • Best Poster Award at Nano Road Show 2020 for his groundbreaking research on MoS2-PANI Hybrid Structures for high photoresponsive properties.

His awards demonstrate his leading position in nanotechnology research.

Legacy and Future Contributions ๐ŸŒฑ

Dr. Chaudhary is poised to leave a lasting legacy in the field of nanoelectronics. His research on 2D materials is setting the foundation for the future of semiconductor devices, particularly in photodetectors, supercapacitors, and biosensors. Looking ahead, Dr. Chaudhary aims to continue pushing the boundaries of material science and device performance. He envisions a future where his innovations can transform industries such as IoT and optical sensing, thereby shaping the next wave of technological advances in nanotechnology. His ongoing contributions will undoubtedly continue to influence and inspire researchers in the field for years to come.

Publication Top Notes

Utilizing the Ability of Few-Layer MoS2 Integrated with MOCVD-Grown ZnGa2O4 for Thermally Stable Deep Ultraviolet Detection Performance

  • Authors: T Khan, N Chaudhary, RH Horng, R Singh
    Journal: ACS Applied Electronic Materials, 6 (10), 7600-7610
    Year: 2024

High-Performance Visible-to-SWIR Photodetector Based on the Layered WS2 Heterojunction with Light-Trapping Pyramidal Black Germanium

  • Authors: K Bhattacharya, N Chaudhary, P Bisht, B Satpati, S Manna, R Singh, …
    Journal: ACS Applied Materials & Interfaces, 16 (36), 48517-48525
    Year: 2024

Quasi-dry layer transfer of few-layer MBE-grown MoTe2 sheets for optoelectronic applications

  • Authors: N Chaudhary, T Khan, K Bhatt, R Singh
    Journal: Sensors and Actuators A: Physical, 115727
    Year: 2024

Gamma-induced stress, strain and p-type doping in MBE-grown thin film MoTe2

  • Authors: N Chaudhary, K Bhatt, T Khan, R Singh
    Journal: Physical Chemistry Chemical Physics, 26 (34), 22529-22538
    Year: 2024

Comparative study of photocatalytic activity of hydrothermally synthesized ultra-thin MoS2 nanosheets with bulk MoS2

  • Authors: N Chaudhary, K Raj, A Harikumar, H Mittal, M Khanuja
    Journal: AIP Conference Proceedings, 2276 (1)
    Year: 2020

 

Syed Hamza Safeer Gardezi | Experimental methods | Best Researcher Award

Dr. Syed Hamza Safeer Gardezi | Experimental methods | Best Researcher Award

Quaid i Azam Universty, Islamabad | Pakistan

Dr. Syed Hamza Safeer Gardezi is an accomplished academic with a rich background in Physics. His academic journey began with a Bachelorโ€™s degree in Science from the University of Punjab, Lahore, Pakistan. He then pursued M.Sc. and M.Phil. degrees in Physics from Quaid-i-Azam University, Islamabad, Pakistan, followed by a Ph.D. from the Pontifical Catholic University of Rio de Janeiro, Brazil. Dr. Gardeziโ€™s research focused on Atomically Thin Semiconducting Transition-Metal Dichalcogenides and their electro-optical properties. With a Post-Doctoral fellowship at the Brazilian Center for Research in Physics (CBPF), Dr. Gardezi now serves as an Assistant Professor at Quaid-i-Azam University, Islamabad.

๐Ÿ‘จโ€๐ŸŽ“Profile

Google scholar

Scopus

Orcid

๐ŸŽ“ Early Academic Pursuits

Dr. Gardeziโ€™s academic journey began with a solid foundation in Physics. His undergraduate studies in Mathematics and Physics at the University of the Punjab set the stage for advanced degrees. He continued his pursuit of knowledge through M.Sc. and M.Phil. degrees at Quaid-i-Azam University, where his thesis research focused on Superconductor materials. His fascination with nanomaterials, especially Transition Metal Dichalcogenides (TMDs), led him to Brazil, where he completed his Ph.D. research on MoS2, WS2, and related materials.

๐Ÿ’ผ Professional Endeavors

Dr. Gardeziโ€™s professional career began as a Lecturer at the Global System of Integrated Studies in Islamabad, Pakistan. He later joined Quaid-i-Azam University as an Assistant Professor, where he has contributed significantly to the Department of Physics. His professional pursuits extend internationally, particularly during his Post-Doctoral research at CBPF in Brazil, focusing on the Spin Hall Effect and Valley Hall Effect in heterostructures like YIG/MoS2.

๐Ÿ”ฌ Contributions and Research Focus

Dr. Gardeziโ€™s primary research interests are in the synthesis and characterization of two-dimensional materials like TMDs, Graphene, and their heterostructures. He is particularly interested in chemical vapor deposition (CVD) techniques to synthesize these materials and study their optical and magnetic properties. Additionally, his work on high-temperature superconductors and solar cells highlights his commitment to exploring green technologies for sustainable energy. His focus also includes the study of defects and Raman scattering mechanisms in nanomaterials.

๐ŸŒ Impact and Influence

Dr. Gardezi has significantly influenced nanotechnology https://hep-conferences.sciencefather.com/awards-winners/and material science research, particularly in semiconducting materials and superconductors. His work on TMDs has contributed to the broader understanding of two-dimensional materials and their potential applications in electronics, photonics, and energy solutions. His research papers have been published in leading journals and widely cited by fellow scientists, helping drive forward the development of next-generation materials and technologies.

๐Ÿงช Research Skills

Dr. Gardezi is well-versed in experimental techniques and synthesis methods, including:

  • Chemical Vapor Deposition (CVD) for 2D-materials.
  • Raman and Photoluminescence (PL) Spectroscopy.
  • X-ray Diffraction (XRD) analysis.
  • Magnetic Susceptibility and Four Probe Resistivity Measurements.
  • Electron Beam Lithography and Photolithography for device fabrication.

These skills position him as a leading researcher in nanomaterials and advanced materials science.

๐Ÿ‘จโ€๐Ÿซ Teaching Experience

As an Assistant Professor at Quaid-i-Azam University, Dr. Gardezi has taught various undergraduate and graduate-level courses in Physics. Some of the courses he has taught include:

  • Introductory Mechanics (Undergraduate).
  • Experimental Physics Methods and Statistical Physics (M.Phil./Ph.D. level).
  • Electromagnetism and Atomic and Molecular Physics.

In addition to his academic work, he has also contributed to laboratory sessions as a Teaching Intern at PUC-Rio in Brazil.

๐Ÿ… Awards and Honors

Dr. Gardezi has received multiple scholarships and recognitions throughout his career, including the CNPq Scholarship for his Postdoctoral Research. His contributions to material science and nanotechnology have been acknowledged at various international conferences and by leading scientific organizations, showcasing his growing impact on the global scientific community.

๐Ÿ•ฐ๏ธ Legacy and Future Contributions

Looking forward, Dr. Gardezi aims to continue pushing the boundaries of material synthesis and characterization. His ongoing research into TMDs and superconductors is set to lead to innovations in quantum computing, energy storage, and photonics. His work not only paves the way for future breakthroughs in sustainable energy solutions but also holds potential for the next generation of electronic devices. His legacy will likely be shaped by his contributions to green technologies and nanoscience.

Publications Top Notes

Enhancing Superconductivity in Cu1/2Tl1/2Ba2Ca2Cu3O10โˆ’ฮด with Graphene Incorporation: A Comprehensive Study

  • Authors: Syed Hamza Safeer, Nizar Saeed, Abida Saleem, Kashif Naseem, Nawazish A. Khan
    Journal: Langmuir
    Year: 2025

Assessment of the importance and catalytic role of chromium oxide and chromium carbide for hydrogen generation via hydrolysis of magnesium

  • Authors: Fei Qin, Yue Zhang, Kashif Naseem, Zhanjun Chen, Suo Guoquan, Waseem Hayat, Syed Hamza Safeer Gardezi
    Journal: Nanoscale
    Year: 2024

Photoluminescent and Magnetic Properties of Mononuclear Lanthanide-Based Compounds Containing the Zwitterionic Form of 4-Picolinic Acid as a Ligand

  • Authors: Esther Areas, Bruno Rodrigues, Ana Carolina do Nascimento, Henrique C. S. Junior, Glaucio Braga Ferreira, Fabio Miranda, Flavio Garcia, Syed Hamza Safeer, Stรฉphane Soriano, Guilherme Guedes
    Journal: Journal of the Brazilian Chemical Society
    Year: 2024

Exploring the magnetic behavior of potassium-doped Cu0.5Tl0.5Ba2Ca2Cu3-xKxO10-ฮด (x=0, 1, 2.5, 3) superconductors

  • Authors: Syed Hamza Safeer, Sadia Arooj, Anila Kanwal, Zil e Huma, Flavio Garcia
    Journal: Physica B: Condensed Matter
    Year: 2024

Automated mechanical exfoliation technique: a spin pumping study in YIG/TMD heterostructures

  • Authors: Rodrigo Torrรฃo Victor, John Fredy Ricardo Marroquin, Syed Hamza Safeer, Danian Alexandre Dugato, Braulio Soares Archanjo, Luiz Carlos Sampaio, Flavio Garcia, Jorlandio Francisco Felix
    Journal: Nanoscale Horizons
    Year: 2023

 

 

 

Venkatesh Bharathi Nagarajan | Experimental methods | Best Researcher Award

Dr. Venkatesh Bharathi Nagarajan | Experimental methods | Best Researcher Award

Mannar Thirumalai Naicker College | India

Dr. N. Venkatesh Bharathi is an accomplished Assistant Professor at the PG and Research Centre of Physics, Mannar Thirumalai Naicker College, Madurai, India. He earned his Ph.D. in Physics from Madurai Kamaraj University in 2022, focusing on the Synthesis and Luminescence Investigation of Phosphor Materials. With over 3 years of teaching experience, he has established himself as a respected academic professional dedicated to advancing the field of material science and physics.

๐Ÿ‘จโ€๐ŸŽ“Profile

Scopus

Orcid

Early Academic Pursuits ๐Ÿ“š

Dr. Bharathi began his academic journey with a Bachelor of Science in Physics from Mannar Thirumalai Naicker College (2014). His pursuit of higher education led him to N.M.S.S.V.N. College, where he earned a Master of Science in Physics (2016), securing Second Rank in his M.Sc. examination. This early academic success laid the foundation for his future research and career.

Professional Endeavors ๐Ÿ’ผ

Dr. Bharathi currently holds the position of Assistant Professor in the PG and Research Centre of Physics at Mannar Thirumalai Naicker College, where he has been serving since September 2021. Alongside teaching, he plays an active role in organizing conferences, workshops, and hands-on training programs, such as the International Conference on Recent Advancement in Material Science and Its Applications (ICRAMSA โ€™23). His professional role includes research supervision, academic mentorship, and contributing to the development of the institution.

Contributions and Research Focus ๐Ÿ”ฌ

Dr. Bharathi’s research spans various areas of material science, including low-temperature crystal growth, nanopowders, phosphor materials, and solid-state ionics for energy storage devices. His Ph.D. thesis focused on the Synthesis and Luminescence Investigation of Phosphor Materials, exploring their potential for optoelectronic applications. His research emphasizes crystal structure analysis through Density Functional Theory (DFT) and the development of luminescent materials that could have significant applications in modern technologies.

Impact and Influence ๐ŸŒŸ

Dr. Bharathi’s research has made a notable impact in the scientific community, with 14 publications in high-impact journals indexed in UGC Care, SCI, and WoS. His work has gained recognition, with 94 citations and an h-index of 6, highlighting the relevance and influence of his contributions. Furthermore, he has been awarded the Young Researcher Award for 2023 from the InSc Institute of Scholars, recognizing his promising research potential and achievements.

Academic Cites ๐Ÿ“‘

A total of 94 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations: 94
  • h-index: 6
  • i10-index: 6

These metrics highlight Dr. Bharathi’s growing influence in the field of phosphor materials and material science research.

Research Skills ๐Ÿ› ๏ธ

Dr. Bharathi is well-versed in lab management, statistical tools, and programming languages such as C & C++. His research skills extend to advanced techniques in characterization of nanomaterials, luminescence investigation, and the application of Density Functional Theory (DFT) in analyzing crystal structures. He has also been involved in energy storage device research, focusing on the development of solid-state ionics.

Teaching Experience ๐ŸŽ

With over 3 years of teaching experience, Dr. Bharathi has been an integral part of the PG and Research Centre of Physics. He plays a key role in delivering lectures, mentoring students, and providing hands-on experiences. He has actively engaged in academic service as well, organizing and leading initiatives such as the hands-on training program on smartphone servicing and troubleshooting in 2022, contributing to both student development and research skills enhancement.

Awards and Honors ๐Ÿ†

Dr. Bharathi’s academic excellence has been recognized through multiple prestigious awards:

  • Best Outgoing Student (2014)
  • Man sans Frontiers Award (2014)
  • Second Rank in M.Sc. Physics Examination (2016)
  • Young Researcher Award (2023) by InSc Institute of Scholars

These honors reflect his dedication to excellence in academics and research.

Legacy and Future Contributions ๐ŸŒฑ

Dr. Bharathi is dedicated to leaving a lasting legacy through his contributions to material science research and academic excellence. With a growing portfolio of published works and ongoing projects, such as the Institutional Sponsored Faculty Research Project on Eu3+/Dy3+ Barium Vanadate Phosphors, he is poised to make further advancements in the field of luminescence and optoelectronics. His future endeavors include expanding research collaborations, securing larger research grants, and further shaping the academic landscape through mentorship and teaching.

Publications Top Notes

On the effective vibrational temperature of the source using (2)ยณฮ  – Xยณฮ  system of GeC molecule
  • Authors: Sindhan, R., Bharathi, N.V., Ramaswamy, S.
    Journal: Astronomy and Computing
    Year: 2024
Synthesis and luminescence investigation of Baโ‚‚Vโ‚‚Oโ‚‡-co-doped Dyยณโบ/Euยณโบ phosphors for white light-emitting diode applications
  • Authors: Venkatesh Bharathi, N., Kavitha, P., Ramaswamy, S., Jayabalakrishnan, S.S., Sakthipandi, K.
    Journal: Indian Journal of Physics
    Year: 2023
Turning of luminescence properties of Baโ‚‚Vโ‚‚Oโ‚‡ phosphors by co-doping Euยณโบ/Dyยณโบ ions
  • Authors: Bharathi, N.V., Kavitha, P., Ramaswamy, S., Jayabalakrishnan, S.S., Sakthipandi, K.
    Journal: Bulletin of Materials Science
    Year: 2022
Synthesis and characterization of a novel Baโ‚‚โ‚‹โ‚“Vโ‚‚Oโ‚‡:โ‚“Dyยณโบ phosphor by hydrothermal method for WLED applications
  • Authors: Bharathi, N.V., Jeyakumaran, T., Ramaswamy, S., Jayabalakrishnan, S.S.
    Journal: AIP Conference Proceedings
    Year: 2021
Synthesis and Luminescence Investigation of Euยณโบ Doped Caโ‚‚KZnโ‚‚Vโ‚ƒOโ‚โ‚‚ Phosphors: A Potential Material for WLEDs Applications
  • Authors: Jeyakumaran, T., Bharathi, N.V., Sriramachandran, P., Shanmugavel, R., Ramaswamy, S.
    Journal: Journal of Inorganic and Organometallic Polymers and Materials
    Year: 2021

 

 

Abid Hussain | Experimental methods | Best Researcher Award

Dr. Abid Hussain | Experimental methods | Best Researcher Award

Govt. Degree College Kargil, Ladakh | India

Dr. Abid Hussain is a highly skilled Assistant Professor at the University of Ladakh, India, specializing in Physics, particularly in the domain of Materials Science. He completed his Ph.D. in Physics from the Inter-University Accelerator Center (IUAC), New Delhi, with a thesis on “Radiation Response of Single-Phase Multicomponent Transition Metal-Based Alloys”. Abidโ€™s work spans several facets of materials science, including high-entropy alloys, radiation damage studies, and the development of cutting-edge experimental setups.

๐Ÿ‘จโ€๐ŸŽ“Profile

Scopus

๐ŸŽ“ Early Academic Pursuits

Abid began his academic journey with a B.Sc. (Hons.) in Physics from Aligarh Muslim University (2012-14), where he majored in Physics, Mathematics, and Chemistry. He then pursued his M.Sc. in Physics from the University of Delhi (2014-16), specializing in Laser and Spectroscopy, which laid the foundation for his future research in advanced material characterization.

๐Ÿ’ผ Professional Endeavors

Dr. Abidโ€™s professional path is marked by his current role as Assistant Professor at the University of Ladakh, where he applies his expertise in Physics and Materials Science to mentor the next generation of scientists. Before this, he made significant contributions at the Inter-University Accelerator Center (IUAC), New Delhi, particularly in high-energy ion irradiation and the study of radiation-induced defects in high-entropy alloys.

๐Ÿ”ฌ Contributions and Research Focus

Dr. Abidโ€™s research interests lie at the intersection of radiation damage, materials science, and applied physics. His work primarily focuses on the radiation stability and defect dynamics in high-entropy alloys, including NiCoCrFePd alloys. Through his extensive ion irradiation experiments, he has contributed valuable insights into the mechanical hardness and phase stability of these materials under extreme conditions. His research is crucial for applications in nuclear reactors and space technology.

๐ŸŒ Impact and Influence

Dr. Abidโ€™s research has been influential in understanding how materials behave under high-energy ion irradiation and has implications for nuclear energy and space exploration. His work has been published in high-impact journals like the Journal of Applied Physics, Materials Science and Engineering: A, and Journal of Alloys and Compounds, contributing to global scientific discussions on high-entropy alloys, radiation-induced hardening, and defect evolution.

Citations๐Ÿ“š

A total of 46 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations –ย  ย  46
  • h-indexย  ย –ย  ย  ย  3

๐Ÿง‘โ€๐Ÿซ Research Skills

Dr. Abid possesses a broad range of technical skills that include:

  • Low and high-temperature XRD systems (down to 15K).
  • E-beam evaporation, sputtering systems, and TEM sample preparation.
  • Expertise in hydrogen sensing using XRD in hydrogen-rich environments.
  • Proficiency in computational techniques with knowledge of C++, FORTRAN, MATLAB, and LaTeX for data analysis and scientific writing. These skills have facilitated his contributions to advanced material characterization and radiation damage studies.

๐Ÿ‘จโ€๐Ÿซ Teaching Experience

Dr. Abidโ€™s teaching career began in August 2023, when he joined the University of Ladakh as an Assistant Professor. He has a strong background in teaching Physics and Materials Science. His teaching integrates research-driven knowledge with a passionate commitment to fostering scientific curiosity in his students. Prior to this, Abid contributed to various research-driven academic setups, enhancing his capability to inspire young minds in the field.

๐Ÿ† Awards and Honors

Dr. Abid has received several accolades for his academic excellence:

  • Best Poster Presentation Award at the Joint ICTP-IAEA Virtual Workshop on Atomistic Modelling of Radiation Damage (2021).
  • 2nd Best Poster Presentation Award at the 7th International Conference on Ion Beams in Materials Engineering and Characterization (2022).
  • Consolation Best Poster Award at the International Conference on Electron Microscopy & XLI Annual Meeting of EMSI (2023). His consistent recognition reflects the high regard for his work within the academic community.

Publications Top Notes

 

 

Essebti Dhahri | Experimental methods | Physics Research and Development Award

Prof. Essebti Dhahri | Experimental methods | Physics Research and Development Award

Facultรฉ des Sciences de Sfax | Tunisia

Professor Dhahri Essebti,ย is a distinguished Professor of Physics at the Faculty of Sciences of Sfax under the Ministry of Higher Education and Scientific Research. He has held the position of Director of the Laboratory of Applied Physics (LPA) since 2016, contributing significantly to the advancement of applied physics and its practical applications in various industries and research sectors.

๐Ÿ‘จโ€๐ŸŽ“Publication Profile

Google scholar

Scopus

Orcid

Early Academic Pursuits ๐ŸŽ“

Professor Dhahriโ€™s academic journey began with a strong foundation in Physics, where he developed a deep understanding of scientific concepts, leading to a specialization in Materials Science, Nanotechnology, and Multifunctional Applications. His early pursuits paved the way for his eventual promotion to Professor in 2005, marking the start of a remarkable career in both teaching and scientific research.

Professional Endeavors ๐Ÿข

Professor Dhahri has held pivotal administrative and scientific roles. He served as the Director of the Research Unit on Physics of Materials and Energetics in 1999, and led the Magnetism Team at the Applied Physics Laboratory from 2005 to 2010. He was appointed the Division Head at the Laboratory of Applied Physics from 2010 to 2015, before assuming his current role as Director of the Laboratory in 2016. His leadership has been instrumental in guiding cutting-edge research in materials physics, nanotechnology, and energy applications.

Contributions and Research Focus ๐Ÿงช

Professor Dhahriโ€™s research has focused extensively on materials science, with a particular emphasis on multifunctional materials, nanotechnology, and applied physics. He has been involved in significant research projects, such as Phosphogypsum valorization in collaboration with the Chemical Group and SIAPE (Sfax). His work aims to merge theoretical physics with practical, industry-based solutions, furthering the use of advanced materials in everyday applications like energy and environmental sustainability.

Impact and Influence ๐ŸŒ

Professor Dhahri’s international collaborations have made a lasting impact on the global scientific community. He has worked with prestigious institutions such as the University of Grenoble (France), University of Aveiro (Portugal), and University of Beni Mellal (Morocco), among others. His leadership in the PHC Maghreb research network has enhanced his ability to bridge scientific efforts across borders, fostering cooperation between countries and driving impactful innovations in materials science and nanotechnology.

His influence extends beyond research to policy-making and scientific advisory roles, having served as a project evaluator for national and bilateral research projects, such as PHC-Utique Projects and Tunisia-Canada collaborations.

Academic Cites and Research Skills ๐Ÿ“Š

With over 500 indexed articles in SCOPUS and an impressive H-index of 52, Professor Dhahri has made a significant mark in the academic world. His research skills span multiple facets of applied physics, particularly materials characterization, energy materials, and nanomaterials. His extensive publication record reflects the broad and deep influence of his work across various scientific communities and disciplines.

Teaching Experience ๐Ÿ‘จโ€๐Ÿซ

Professor Dhahri has taught Physics at Bachelorโ€™s, Masterโ€™s, and Postgraduate levels, contributing to the development of future scientists and researchers. He has supervised 33 doctoral theses, 56 DEA and Master’s projects, and 17 Professional Masterโ€™s Projects, demonstrating his commitment to guiding students through complex scientific concepts and research methodologies. His mentorship has helped cultivate a new generation of scholars in the field of applied physics.

Legacy and Future Contributions ๐ŸŒŸ

Professor Dhahriโ€™s legacy lies in his ability to integrate academic research with practical industrial applications, making significant strides in the valorization of materials and energy applications. His future contributions are expected to continue shaping the fields of nanotechnology, materials science, and energy solutions. Furthermore, his role as a mentor and project evaluator ensures that his influence will persist in shaping the direction of future research in Tunisia and beyond.

Publications Top Notes

 

 

A. M S Arulanantham | Experimental methods | Best Researcher Award

Dr. A. M. S. Arulanantham | Experimental methods | Best Researcher Award

Dhanalakshmi srinivasan College of Engineering and Technology | India

Dr. A. Maria Susai Arulanantham, an accomplished physicist and researcher, holds a Ph.D. in Physics from Arul Anandar College, Madurai Kamaraj University, India. His extensive research focuses on semiconducting tin sulfide thin films for solar cell applications, showcasing his commitment to advancing clean and green energy technologies. Dr. Arulananthamโ€™s work has consistently contributed to the fields of material science and renewable energy, making his a highly regarded figure in the scientific community.

๐Ÿ‘จโ€๐ŸŽ“Profile

Google scholar

Scopus

Orcid

Early Academic Pursuits ๐Ÿ“š

Dr. Arulananthamโ€™s academic journey began with a B.Sc. in Physics from St. Xavierโ€™s College, followed by a Masterโ€™s in Physics from Arul Anandar College, Madurai Kamaraj University. He further pursued his Ph.D., where he focused on the investigation of tin sulfide thin films for use in solar cells and photosensing applications. These early academic pursuits laid a strong foundation for his successful career as a researcher.

Professional Endeavors ๐Ÿ’ผ

Dr. Arulanantham has garnered significant professional experience throughout his career. He worked as a Junior Research Fellow (JRF) on a DST Major Project (2014-2017), where his research contributed to the development of solar energy technologies. Additionally, his teaching career includes over 4 years of service as an Assistant Professor in the Department of Physics at St. Josephโ€™s College of Arts and Science, Vaikalipatti, where he nurtured the next generation of physicists.

Contributions and Research Focus ๐Ÿ”ฌ

Dr. Arulananthamโ€™s research focuses primarily on tin sulfide materials (SnS, SnS2, Sn2S3, and Sn3S4) for solar cells and photosensing applications. He has worked extensively on thin film fabrication and characterization, contributing to the development of solar cells and gas-sensing devices. His work emphasizes sustainability, with an overarching goal of improving energy efficiency and advancing green energy technologies for a cleaner future.

Research Skills ๐Ÿ”ง

Dr. Arulanantham is highly skilled in material synthesis techniques, including Chemical Bath Deposition (CBD), Spin Coating, and Chemical Spray Pyrolysis (CSP). He also has hands-on expertise in advanced characterization techniques such as X-ray Diffraction (XRD), Raman Spectroscopy, Scanning Electron Microscopy (SEM), and UV-Vis Spectroscopy. These techniques are essential for producing high-quality thin films for solar cell applications and gas sensors.

Technical Skills ๐Ÿ’ป

Dr. Arulanantham is proficient in C, C++ programming, MS Office, and instrument design. He also has experience with Arduino and X-Y stepper programs, skills that are essential for his research and instrumentation development. His technical skills complement his research, enabling his to develop custom solutions for material synthesis and data analysis.

Teaching Experience ๐Ÿ‘ฉโ€๐Ÿซ

In addition to his research work, Dr. Arulanantham has an extensive teaching experience of over 4 years, having served as an Assistant Professor in the Department of Physics at St. Josephโ€™s College of Arts and Science. He has actively engaged in student mentorship, encouraging curiosity and fostering a passion for physics and material science. His academic guidance has influenced countless students in pursuing careers in science and research.

Awards and Honors ๐Ÿ†

Dr. Arulananthamโ€™s contributions to research and academia have been recognized through numerous awards and honors, including:

  • Best Poster Presentation at Muslim Arts College, Thiruvithancode (2016)
  • Best Poster Presentation at Madurai Kamaraj University (2017)
  • Best Poster Presentation at Mother Theresa Womenโ€™s University, Kodaikanal (2018)
  • Junior Research Fellowship (JRF) from DST, India (2014-2017)

These accolades underscore his commitment to excellence in both research and education.

Citations๐Ÿ“š

A total of 571 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citationsย  ย  571
  • h-indexย  ย  ย  ย  ย 16
  • i10-indexย  ย  ย  23

Publications Top Notes

 

 

Seyed Rasoul Nabavian | Experimental methods | Best Researcher Award

Assist. Prof. Dr. Seyed Rasoul Nabavian | Experimental methods | Best Researcher Award

Faculty Member at Ayatollah Boroujerdi University, Boroujerd, Iran

๐Ÿ‘จโ€๐ŸŽ“ Profile

Summary๐ŸŒŸ

Dr. Seyed Rasoul Nabavian is a highly accomplished civil engineer and academic leader with expertise in structural engineering, dynamic structural identification, and space structures. He holds a PhD in Civil Engineering from Noshirvani University of Technology and is currently a faculty member and head of the Civil Engineering Department at Ayatollah Boroujerdi University. With numerous awards and a strong research background, he has contributed extensively to the fields of concrete technology, modal testing, and structural health monitoring. ๐Ÿ†

๐ŸŽ“ Education & Academic Excellence

Dr. Seyed Rasoul Nabavian holds a PhD in Civil Engineering from Noshirvani University of Technology, specializing in dynamic properties of double-layer grids. He ranked 19th nationally in the PhD entrance exam, and consistently topped his class during his Bachelor’s and Master’s studies in Structural Engineering, earning top honors and GPAs above 18.

๐Ÿ’ผProfessional Experience

Dr. Nabavian has established himself as a leader in both academia and industry. As a Faculty Member and Head of the Civil Engineering Department at Ayatollah Boroujerdi University, he has mentored countless students and contributed to the growth of the department. His expertise extends beyond the classroom, as he has actively participated in various research initiatives with organizations such as the Defense Industries Organization and the Mazandaran Building Engineering System Organization. Dr. Nabavian’s professional experience also includes roles in concrete laboratory tests, geotechnical studies, and the management of residential building projects.

๐ŸŒ Contributions and Research Focus

Dr. Nabavianโ€™s research interests focus on a wide range of cutting-edge topics in civil engineering, particularly in space structures, double-layer grids, cable domes, modal testing, and structural health monitoring. His work in Operational Modal Analysis (OMA) and output-only modal identification has contributed to advancements in damage detection and system identification of structures under dynamic conditions. Additionally, his research on recycled aggregate concrete, fiber-reinforced concrete, and impact-resistant materials aligns with the growing emphasis on sustainable construction.

๐Ÿ‘จโ€๐ŸซTeaching Experience

Dr. Nabavian has consistently demonstrated a passion for education throughout his career. He has taught at Noshirvani University of Technology, Ayatollah Boroujerdi University, and Tabari Higher Education Institute, where he has inspired students with his in-depth knowledge of civil engineering principles. His role as a thesis supervisor and advisor has allowed him to guide emerging researchers in structural health monitoring, seismic evaluation, and material science. He has supervised numerous graduate and postgraduate theses, including groundbreaking research on seismic isolation and fiber-reinforced concrete. Dr. Nabavian’s dedication to teaching is reflected in his studentsโ€™ academic success and his recognition as an exemplary educator.

๐Ÿ› ๏ธ Technical Skills and Software Expertise

Dr. Nabavian possesses an extensive skill set in structural analysis and engineering software, including proficiency in ARTeMIS, AutoCAD, ETABS, and MATLAB. His technical acumen is complemented by advanced knowledge of signal processing, noise reduction techniques, and data analysis, which have been applied to improve the accuracy and efficiency of output-only structural identification methods.

Top Noted Publications

Output-only modal analysis of a beam via frequency domain decomposition method using noisy data
  • Authors: S Mostafavian, SR Nabavian, MR Davoodi, B Navayi Neya
    Journal: International Journal of Engineering
    Year: 2019
Influence of nano-silica particles on fracture features of recycled aggregate concrete using boundary effect method: Experiments and prediction models
  • Authors: SR Nabavian, H Fallahnejad, A Gholampour
    Journal: Structural Concrete
    Year: 2024
Damping estimation of a double-layer grid by output-only modal identification
  • Authors: SR Nabavian, MR Davoodi, B Navayi Neya, SA Mostafavian
    Journal: Scientia Iranica
    Year: 2021
Effect of noise on output-only structural identification of beams
  • Authors: SR Nabavian, MR Davoodi, B Navayi Neya, SA Mostafavian
    Journal: Journal of Structural and Construction Engineering
    Year: 2020
Fracture characteristics of recycled aggregate concrete using work-of-fracture and size effect methods: the effect of water to cement ratio
  • Authors: H Fallahnejad, SR Nabavian, A Gholampour
    Journal: Archives of Civil and Mechanical Engineering
    Year: 2024

 

 

 

Md Wahadoszamen | Experimental methods | Best Researcher Award

Prof. Dr. Md Wahadoszamen | Experimental methods | Best Researcher Award

Professor of Physics at University of Dhaka, Bangladesh

Profile๐ŸŽ“

Early Academic Pursuits ๐ŸŽ“

Dr. Md. Wahadoszamen embarked on his academic journey at the University of Dhaka, Bangladesh, where he earned his BSc in Physics (April 1999) and MSc in Physics (December 2000). Driven by his passion for material science, he pursued further studies at Hokkaido University, Japan, where he earned his PhD in Material Science in March 2006. His academic pursuits laid a solid foundation in experimental and theoretical laser physics, biophotonics, and nanophotonics, which would become central to his future research.

Professional Endeavors and Research Focus ๐Ÿ”ฌ

Dr. Wahadoszamen’s career spans a broad spectrum of prestigious academic institutions across the globe. He joined the University of Dhaka as a Lecturer in 2006, eventually advancing to the position of Professor in May 2016. His academic role at the University of Dhaka has been complemented by positions at Kwansei Gakuin University in Japan, Carnegie Mellon University in the United States, and VU University Amsterdam in the Netherlands. These international engagements have enriched his research and expanded his academic influence globally.

His primary research interests lie at the intersection of laser physics, optical physics, and biophotonics. Specifically, Dr. Wahadoszamen has specialized in Raman Spectroscopy, Surface-Enhanced Raman Spectroscopy (SERS), Laser-Induced Breakdown Spectroscopy (LIBS), and Z-Scan Techniques. His work involves developing advanced materials like monometallic and bimetallic nanocomposites and highly fluorescent carbon nanodots, which have numerous applications in fields such as materials science, photonics, and biomedical imaging.

Contributions and Research Impact ๐ŸŒŸ

Dr. Wahadoszamen’s contributions to laser and nanophotonics have significantly advanced the understanding of molecular interactions and material properties under laser illumination. His work on laser spectroscopy has provided new insights into nanomaterials and their applications, particularly in biomedical diagnostics and environmental monitoring. The development of carbon nanodots with high fluorescence properties has opened up new avenues in bioimaging and sensor technology. His research also explores biophysical applications of lasers, specifically in studying biological systems at the molecular and cellular levels.Through his research, Dr. Wahadoszamen has influenced key sectors, particularly in the fields of optical spectroscopy, nanotechnology, and biophotonics, where his work on nanocomposites and optical sensors has the potential to impact various industries, from medicine to environmental monitoring.

Teaching Experience and Mentorship ๐Ÿ“š

Dr. Wahadoszamen has been an influential educator, teaching advanced courses in Quantum Mechanics, Biophysics, and Laser Physics at institutions such as the University of Dhaka, Kwansei Gakuin University, and University of Tsukuba. His extensive teaching experience, especially in guiding graduate students and postdocs, demonstrates his commitment to cultivating the next generation of scientists. He has taught graduate-level courses like Advanced Laser Physics for MS students, focusing on cutting-edge topics in laser theory and spectroscopy. In addition, he has supervised and mentored numerous MSc and PhD students throughout his career, preparing them to conduct pioneering research in physics and material science.

Technical Skills and Expertise ๐Ÿ› ๏ธ

Dr. Wahadoszamen possesses a wide range of technical skills that are critical to his research success:

  • Raman Spectroscopy (including Surface-Enhanced Raman Spectroscopy)
  • Laser-Induced Breakdown Spectroscopy (LIBS)
  • Z-Scan and Stark Spectroscopy
  • Nanocomposite Fabrication, including both monometallic and bimetallic materials
  • Fluorescence Spectroscopy and Absorption Spectroscopy

His ability to develop and implement innovative experimental techniques has led to significant advancements in molecular and material sciences.

Legacy and Future Contributions ๐ŸŒ

Dr. Wahadoszamen’s career reflects his global impact as a leader in laser physics and biophotonics. His research legacy continues to inspire both his students and the broader scientific community. As a Professor and researcher, he has not only contributed to the scientific literature but also fostered a culture of collaborative research, working with prominent scientists from across the world. With future research projects focused on quantum photonics, bioimaging, and advanced nanomaterials, his work promises to make even more groundbreaking contributions to the fields of material science and biophotonics.

Research Collaborations and Academic Citations ๐Ÿ“ˆ

Dr. Wahadoszamen’s international research collaborations with experts from VU University Amsterdam, Carnegie Mellon University, Moscow State University, and many others have elevated his research output. His ability to engage with leading researchers from diverse institutions allows him to stay at the cutting edge of nanophotonics and biophotonics. With over 1000 citations and numerous influential publications in high-impact journals, his academic reputation continues to grow. His contributions have made a lasting impact in nanomaterials, molecular photonics, and laser spectroscopy.

Academic Service and Leadership ๐Ÿ…

In addition to his research and teaching, Dr. Wahadoszamen has taken on leadership roles, such as serving as the Secretary for the International e-Conference on Physics 2021 organized by the University of Dhaka. He has also been an active student advisor and treasurer for various organizations, showcasing his commitment to academic service and community engagement. His leadership in organizing conferences and guiding young researchers further highlights his influence within the academic community.

A Vision for the Future ๐ŸŒ 

As Dr. Wahadoszamen continues to build on his outstanding achievements, his future contributions to nanotechnology, biophotonics, and laser spectroscopy are poised to shape the next generation of scientific innovations. His commitment to cutting-edge research, combined with his dedication to education and mentoring, ensures that his legacy will endure. Through his ongoing research in nanocomposites, carbon nanodots, and bioimaging, Dr. Wahadoszamen is well-positioned to continue influencing not only academic circles but also the broader scientific and technological landscape in the years to come.

Top Noted Publications๐Ÿ“–

  • Authors: Michal Gwizdala, Tjaart PJ Kruฬˆger, Md Wahadoszamen, J Michael Gruber, Rienk Van Grondelle
  • Journal: The journal of physical chemistry letters
  • Year: 2018

Identification of two emitting sites in the dissipative state of the major light harvesting antenna

  • Authors: Md Wahadoszamen, Rudi Berera, Anjue Mane Ara, Elisabet Romero, Rienk van Grondelle
  • Journal: Physical Chemistry Chemical Physics
  • Year: 2012

Laser Raman spectroscopy with different excitation sources and extension to surface enhanced Raman spectroscopy

  • Authors: Md Wahadoszamen, Arifur Rahaman, Nabil Md Rakinul Hoque, Aminul I Talukder, Kazi Monowar Abedin, AFM Yusuf Haider
  • Journal: Journal of Spectroscopy
  • Year: 2015

Rigidity and polarity effects on the electronic properties of two deep blue delayed fluorescence emitters

  • Authors: Christian M Legaspi, Regan E Stubbs, Md Wahadoszaman, David J Yaron, Linda A Peteanu, Abraham Kemboi, Eric Fossum, Yongli Lu, Qi Zheng, Lewis J Rothberg
  • Journal: The Journal of Physical Chemistry
  • Year: 2018

Charge transfer states in phycobilisomes

  • Authors: Md Wahadoszamen, Tjaart PJ Krรผger, Anjue Mane Ara, Rienk Van Grondelle, Michal Gwizdala
  • Journal: Biochimica et Biophysica Acta (BBA)-Bioenergetics
  • Year: 2020