Guangdi Zhao | Experimental methods | Best Researcher Award

Assoc. Prof. Dr. Guangdi Zhao | Experimental methods | Best Researcher Award

Associate professor at University of Science and Technology Liaoning | China

Guangdi Zhao is an associate professor and currently the associate dean of the School of Materials and Metallurgy. He serves as a doctoral supervisor with a strong academic foundation from Central South University, University of Chinese Academy of Sciences, and University of Science and Technology of China. Since beginning his career in 2017, Zhao has excelled in both research and academic leadership, building a reputable profile in materials science and engineering. His ongoing dedication to advancing metallurgical education and research reflects his commitment to scientific excellence and mentorship.

👨‍🎓Profile

Scopus 

ORCID

🎓 Early Academic Pursuits

Zhao’s academic journey started with a bachelor’s degree in materials science and engineering at Central South University, followed by a master’s in materials science at the University of Chinese Academy of Sciences, and culminated in a Ph.D. at the University of Science and Technology of China. Throughout his studies, he developed a strong foundation in metallurgical processes and materials characterization, which laid the groundwork for his future research. His early training focused on innovative materials design and engineering, preparing him for an impactful academic and research career.

🔬 Professional Endeavors

Since July 2017, Zhao has grown from an early-career researcher to a respected academic leader, currently holding the position of associate dean and doctoral supervisor. He has led 4 vertical and 2 horizontal research projects funded by prestigious sources, including the National Natural Science Foundation of China and provincial science foundations. Zhao also hosts educational reform projects at his institution, illustrating his dual focus on research innovation and teaching improvement. His role expands beyond research to academic leadership and mentoring young scientists.

🛠️ Contributions and Research Focus

Zhao’s research concentrates on materials science and metallurgy, particularly in developing and optimizing metallurgical processes and materials properties. He has published 17 SCI/EI papers as first or corresponding author in internationally recognized journals such as Materials Science & Engineering A and Journal of Alloys and Compounds. His work addresses critical challenges in casting, forging, and metallographic skills, emphasizing defect control, microstructure analysis, and innovative alloy design. Zhao’s contributions push the boundaries of materials engineering for practical industrial applications.

🌟 Impact and Influence

Guangdi Zhao has significantly impacted the materials science community through his research, publications, and mentorship. His leadership on multiple funded projects reflects recognition of his scientific expertise. As an associate dean and committee member in Liaoning Province’s casting and forging industry, he influences both academic and industrial practices. His students’ success in national competitions and his role on editorial boards for “Special Steel” and “CHINA FOUNDRY” amplify his influence, promoting high standards in both research and teaching.

📚 Academic Citations

With 17 SCI/EI-indexed publications, Zhao maintains a strong academic presence, contributing original research to top materials science journals. His first-author and corresponding-author roles in highly cited papers demonstrate leadership in research output. These works are frequently cited by peers, reflecting the relevance and impact of his findings in metallurgical science. Zhao’s growing citation record highlights his ongoing contribution to advancing knowledge and provides a solid foundation for future collaborative research and scholarly influence.

đź§° Research Skills

Zhao possesses advanced expertise in materials characterization, microstructure analysis, and metallurgical process optimization. His skills include designing experimental protocols for alloy development, mastering metallographic techniques, and utilizing scientific methods to improve casting and forging processes. He is proficient in leading multidisciplinary research teams, securing funding, and translating fundamental research into practical industrial applications. Zhao’s technical acumen and problem-solving abilities are key to his success in both research and mentoring.

🎓 Teaching Experience

As an associate professor and doctoral supervisor, Zhao demonstrates strong commitment to education. He has won awards such as the Quality Classroom Award and provincial recognition for excellence in guiding students, particularly in metallographic skills competitions. Zhao actively develops and reforms educational programs, aiming to enhance student learning experiences in materials science. His hands-on mentorship helps students excel academically and competitively, fostering a new generation of researchers with robust technical and theoretical knowledge.

🏅 Awards and Honors

Zhao’s achievements have been recognized through numerous honors, including the prestigious “Hundred, Thousand, Thousand Talents Project” and “Ten Thousand” level candidate status in Liaoning Province. He has received the third prize in the Liaoning Provincial Teacher Teaching Innovation Competition, the Quality Classroom Award, and provincial-level Excellent Guidance Teacher accolades. Additionally, Zhao earned the third prize of Liaoning Provincial Natural Science Academic Achievement Award, underscoring his research excellence and educational impact at both provincial and institutional levels.

đź”® Legacy and Future Contributions

Guangdi Zhao’s legacy is grounded in his dedication to advancing metallurgical science through high-impact research, leadership, and mentorship. As associate dean, he shapes academic policies and fosters innovation in materials education. Zhao’s future contributions are expected to expand international collaborations, explore novel alloy systems, and enhance industrial applications of his research. His commitment to student development ensures a lasting impact on the next generation of scientists, positioning him as a leading figure in China’s materials science community.

Publications Top Notes

  • Title: Effect of homogenization treatment on the microstructure evolution and hot deformation behavior of hard-deformed superalloy GH4975
    Authors: Zhao Guangdi, Zang Ximin, Sun Yixuan, Xin Xin, Li Xue, Wang Lide, Wang Li
    Journal: Materials Science and Engineering: A
    Year: 2025

  • Title: Role of carbides on hot deformation behavior and dynamic recrystallization of hard-deformed superalloy U720Li
    Authors: Guangdi Zhao, Ximin Zang, Yuan Jing, Nan LĂĽ, Jinjiang Wu
    Journal: Materials Science and Engineering: A
    Year: 2021

  • Title: Microstructure and hot ductility behavior of Ni-based superalloy U720Li with boron addition
    Authors: Guang-Di Zhao, Fang Liu, Xi-Min Zang, Wen-Ru Sun
    Journal: Rare Metals
    Year: 2021

  • Title: Role of carbon in modifying solidification and microstructure of a Ni-based superalloy with high Al and Ti contents
    Authors: Guang-di Zhao, Xi-min Zang, Wen-ru Sun
    Journal: Journal of Iron and Steel Research International
    Year: 2021

Changjun Chen | Experimental methods | Best Researcher Award

Prof. Changjun Chen | Experimental methods | Best Researcher Award

Director at Soochow University | China

Prof. Changjun Chen is a renowned expert in laser materials processing and holds a professorship at the Laser Processing Research Center, School of Mechanical and Electric Engineering, Soochow University, Suzhou, China. He is also the Secretary General of both the Laser Industry Alliance of G60 S&T Innovation Valley of Yangtze River and the Jiangsu Province Laser Innovation. Prof. Chen’s research spans a variety of cutting-edge applications, particularly in laser welding, laser metal deposition, laser-assisted material removal, and surface modification. He has significantly contributed to the development of new techniques in these areas that are pivotal for industrial applications, especially in aerospace, automotive, and energy sectors.

👨‍🎓Profile

Scopus 

ORCID

📚 Early Academic Pursuits

Prof. Chen began his academic journey by obtaining his Bachelor’s degree (BE) in 2000 from Northeastern University in Shenyang, China. He further advanced his education by earning a Ph.D. in 2007 from the Institute of Metal Research, Chinese Academy of Sciences, specializing in materials science. His early academic pursuits laid a strong foundation for his later contributions to laser processing and materials science.

đź’Ľ Professional Endeavors

Prof. Chen’s professional career began in 2007 when he joined Wuhan University of Science and Technology, where he served as an associate professor until 2011. His career took a major leap when he joined Soochow University in 2011, attaining the title of Professor. His academic journey also includes a significant research visit to Columbia University in 2013-2014, supported by the China Scholarship Council. This international exposure has allowed him to collaborate and interact with leading researchers across the globe.

🔬 Contributions and Research Focus

Prof. Chen’s research is focused on laser materials processing and its industrial applications. His group explores a range of cutting-edge topics, including:

  • Laser Metal Deposition: Particularly for superalloys and high-strength steels like high-speed steel, which are essential for both remanufacturing and manufacturing processes.

  • Laser-Forming of Metallic Foam: For applications in aerospace and automotive industries, focusing on shock absorption, weight reduction, and sustainability.

  • Laser Cladding for Gas Turbines: Optimizing superalloys for use in extreme environments.

  • Laser Welding/Sealing of Glass to Metal/Alloy: A highly specialized area of industrial processing.

His group’s novel experimental setups, combined with materials characterization and theoretical/numerical models, aim to improve quality and productivity in manufacturing processes.

🌍 Impact and Influence

Prof. Chen’s work has had a profound impact on both academia and industry. His research in laser processing has directly contributed to increased productivity, improved quality, and enhanced efficiency in manufacturing and remanufacturing industries. Prof. Chen’s involvement in laser innovation not only benefits industrial applications but also supports sustainable practices, notably through the development of metal foams for weight reduction in transportation and aerospace sectors.

đź“‘ Academic Cites

With over 200 peer-reviewed papers published, Prof. Chen’s work is highly regarded in the scientific community. His contributions have earned him significant recognition, with over 100 of these papers cited in SCI-indexed journals. His publications reflect his deep expertise in materials science and laser processing technology.

🛠️ Research Skills

Prof. Chen’s research is characterized by his innovative approach to laser material interactions, which involves a balance of theoretical investigation and hands-on experimentation. His skills in materials characterization, numerical simulations, and process optimization have enabled him to make significant advancements in laser welding, cladding, and deposition processes. Furthermore, his expertise in foam shaping via laser forming has contributed to the development of sustainable manufacturing techniques for industries like automotive and aerospace.

🏅 Teaching Experience

In addition to his research, Prof. Chen has a long history of mentoring students and professionals in the field of materials science and laser processing. As a professor at Soochow University, he has played a pivotal role in shaping the careers of countless graduate and post-graduate students. His teaching style emphasizes the integration of theoretical knowledge with practical application, ensuring that his students are well-prepared for careers in both academia and industry.

🌱 Legacy and Future Contributions

Prof. Chen’s work has laid a solid foundation for future advancements in laser processing technologies. His contributions to sustainable manufacturing through laser-assisted foam shaping and metal deposition are expected to shape the future of the aerospace, automotive, and energy industries. His research group continues to push the boundaries of what is possible in laser-based manufacturing, and his global collaborations ensure that his influence will continue to grow, benefiting industries worldwide.

Publications Top Notes

Effect of composite adding Ta and Mo on microstructure and properties of W-Mo-Cr high-speed steel prepared by laser metal deposition

  • Authors: M. Zhang, C. Chen (Changjun)
    Journal: Applied Physics A: Materials Science and Processing
    Year: 2025

The influence of anodization on laser transmission welding between high borosilicate glass and TC4 titanium alloy

  • Authors: L. Li (Lei), C. Chen (Changjun), C. Li (Chunlei), C. Tian (Chen), W. Zhang (Wei)
    Journal: Optics and Laser Technology
    Year: 2025

Effect of High-Temperature Oxidation on Laser Transmission Welding of High Borosilicate Glass and TC4 Titanium Alloy

  • Authors: M. Xu (Mengxuan), C. Chen (Changjun), J. Shao (Jiaqi), M. Zhang (Min), W. Zhang (Wei)
    Journal: Journal of Materials Engineering and Performance
    Year: 2025

Comparative Study of the Effects of Different Surface States During the Laser Sealing of 304 Steel/High-Alumina Glass

  • Authors: C. Chen (Changjun), B. Bao (Bei), J. Shao (Jiaqi), M. Zhang (Min), H. Liu (Haodong)
    Journal: Coatings
    Year: 2025

Effects of Different Surface Treatment Methods on Laser Welding of Aluminum Alloy and Glass

  • Authors: C. Chen (Changjun), L. Li (Lei), M. Zhang (Min), W. Zhang (Wei)
    Journal: Coatings
    Year: 2024