Zhang Xuexue | Experimental methods | Best Researcher Award

Ms. Zhang Xuexue | Experimental methods | Best Researcher Award

Student at Anhui University of Technology, China

Zhangxuexue is a dedicated graduate student at Anhui University of Technology, specializing in the field of absorbing materials. With a passion for materials science and nanotechnology, she has already made meaningful academic contributions during her academic journey. Her standout work involves the development of air/SiO₂@Fe/C yolk-shell nanospheres, which has been published in the prestigious Journal of Alloys and Compounds. Zhangxuexue demonstrates a strong foundation in research methodology and is positioning herself as a rising researcher in electromagnetic wave absorption materials.

Author Profile 

Scopus

Education

Zhangxuexue is currently pursuing her graduate studies at Anhui University of Technology, majoring in Materials Science and Engineering. Her coursework and academic training have provided her with a robust foundation in material synthesis, nanotechnology, and electromagnetic wave interaction. Throughout her studies, she has engaged in laboratory work and collaborative research projects, gaining hands-on experience in materials characterization techniques such as SEM, XRD, and VSM. The interdisciplinary curriculum at Anhui University of Technology has equipped her with both theoretical knowledge and practical skills in designing advanced functional materials. Her thesis work focuses on yolk-shell nanostructures for electromagnetic wave absorption, where she integrates material chemistry with electromagnetic theory.

Professional Experience

As a graduate researcher at Anhui University of Technology, Zhangxuexue has actively participated in experimental and theoretical research related to electromagnetic wave absorbing materials. Her most notable contribution is the successful design and fabrication of air/SiO₂@Fe/C yolk-shell nanospheres, which she co-developed and characterized using advanced techniques. This research resulted in a peer-reviewed publication, marking an early milestone in her academic career. She has also contributed to various lab-based projects involving the synthesis of hybrid materials, dielectric analysis, and the simulation of microwave absorption behavior. Through this work, she has developed a deep understanding of composite design, material interfaces, and the mechanisms behind wave attenuation.

Awards and Honors

While pursuing her graduate studies at Anhui University of Technology, Zhangxuexue has demonstrated academic excellence and research potential. She has received internal recognition from her department for outstanding performance in materials research and laboratory work. Her paper titled Construction of air/SiO₂@Fe/C yolk-shell nanospheres for boosted low-frequency electromagnetic wave absorption, published in the prestigious Journal of Alloys and Compounds, earned her commendation from faculty and peers alike.

Research Focus

Zhangxuexue’s research focus lies in the field of electromagnetic wave absorbing materials, with a specific interest in yolk-shell nanostructures and hybrid composites. Her work targets the development of lightweight, high-performance materials capable of attenuating low-frequency electromagnetic radiation. By manipulating composition, morphology, and interface properties, she aims to enhance the dielectric and magnetic losses of the absorbing materials. Her flagship study involves air/SiO₂@Fe/C yolk-shell nanospheres, designed to optimize internal scattering and impedance matching for efficient absorption. Beyond microwave absorption, she is also interested in the broader implications of these materials for stealth technology, electronic packaging, and electromagnetic interference (EMI) shielding.

Notable Publication

Construction of air/SiO₂@Fe/C yolk-shell nanospheres for boosted low-frequency electromagnetic wave absorption

Authors: Xuexue Zhang¹, Jing Wang¹, Weiwei Wang, Cao Wu, Chang Liu, Hailiang Deng, Liyan Wei, Weihua Gu, Wenbo Du, Yanning Chen, Hongwei Liu, Xun Cao

Journal: Journal of Alloys and Compounds

Year: 2025

Conclusion

Zhangxuexue is an emerging researcher in the field of electromagnetic wave absorbing materials, with a solid academic foundation and a growing record of scientific contribution. Her innovative work on yolk-shell nanostructures demonstrates both creativity and technical skill in material design. As a graduate student at Anhui University of Technology, she has shown strong potential for impactful research and future academic advancement. With a keen interest in nanomaterials and their real-world applications, Zhangxuexue aims to further explore advanced absorption mechanisms and scalable solutions for electromagnetic interference control. Her dedication and accomplishments position her as a promising talent in materials science.

 

 

Guangdi Zhao | Experimental methods | Best Researcher Award

Assoc. Prof. Dr. Guangdi Zhao | Experimental methods | Best Researcher Award

Associate professor at University of Science and Technology Liaoning | China

Guangdi Zhao is an associate professor and currently the associate dean of the School of Materials and Metallurgy. He serves as a doctoral supervisor with a strong academic foundation from Central South University, University of Chinese Academy of Sciences, and University of Science and Technology of China. Since beginning his career in 2017, Zhao has excelled in both research and academic leadership, building a reputable profile in materials science and engineering. His ongoing dedication to advancing metallurgical education and research reflects his commitment to scientific excellence and mentorship.

👨‍🎓Profile

Scopus 

ORCID

🎓 Early Academic Pursuits

Zhao’s academic journey started with a bachelor’s degree in materials science and engineering at Central South University, followed by a master’s in materials science at the University of Chinese Academy of Sciences, and culminated in a Ph.D. at the University of Science and Technology of China. Throughout his studies, he developed a strong foundation in metallurgical processes and materials characterization, which laid the groundwork for his future research. His early training focused on innovative materials design and engineering, preparing him for an impactful academic and research career.

🔬 Professional Endeavors

Since July 2017, Zhao has grown from an early-career researcher to a respected academic leader, currently holding the position of associate dean and doctoral supervisor. He has led 4 vertical and 2 horizontal research projects funded by prestigious sources, including the National Natural Science Foundation of China and provincial science foundations. Zhao also hosts educational reform projects at his institution, illustrating his dual focus on research innovation and teaching improvement. His role expands beyond research to academic leadership and mentoring young scientists.

🛠️ Contributions and Research Focus

Zhao’s research concentrates on materials science and metallurgy, particularly in developing and optimizing metallurgical processes and materials properties. He has published 17 SCI/EI papers as first or corresponding author in internationally recognized journals such as Materials Science & Engineering A and Journal of Alloys and Compounds. His work addresses critical challenges in casting, forging, and metallographic skills, emphasizing defect control, microstructure analysis, and innovative alloy design. Zhao’s contributions push the boundaries of materials engineering for practical industrial applications.

🌟 Impact and Influence

Guangdi Zhao has significantly impacted the materials science community through his research, publications, and mentorship. His leadership on multiple funded projects reflects recognition of his scientific expertise. As an associate dean and committee member in Liaoning Province’s casting and forging industry, he influences both academic and industrial practices. His students’ success in national competitions and his role on editorial boards for “Special Steel” and “CHINA FOUNDRY” amplify his influence, promoting high standards in both research and teaching.

📚 Academic Citations

With 17 SCI/EI-indexed publications, Zhao maintains a strong academic presence, contributing original research to top materials science journals. His first-author and corresponding-author roles in highly cited papers demonstrate leadership in research output. These works are frequently cited by peers, reflecting the relevance and impact of his findings in metallurgical science. Zhao’s growing citation record highlights his ongoing contribution to advancing knowledge and provides a solid foundation for future collaborative research and scholarly influence.

🧰 Research Skills

Zhao possesses advanced expertise in materials characterization, microstructure analysis, and metallurgical process optimization. His skills include designing experimental protocols for alloy development, mastering metallographic techniques, and utilizing scientific methods to improve casting and forging processes. He is proficient in leading multidisciplinary research teams, securing funding, and translating fundamental research into practical industrial applications. Zhao’s technical acumen and problem-solving abilities are key to his success in both research and mentoring.

🎓 Teaching Experience

As an associate professor and doctoral supervisor, Zhao demonstrates strong commitment to education. He has won awards such as the Quality Classroom Award and provincial recognition for excellence in guiding students, particularly in metallographic skills competitions. Zhao actively develops and reforms educational programs, aiming to enhance student learning experiences in materials science. His hands-on mentorship helps students excel academically and competitively, fostering a new generation of researchers with robust technical and theoretical knowledge.

🏅 Awards and Honors

Zhao’s achievements have been recognized through numerous honors, including the prestigious “Hundred, Thousand, Thousand Talents Project” and “Ten Thousand” level candidate status in Liaoning Province. He has received the third prize in the Liaoning Provincial Teacher Teaching Innovation Competition, the Quality Classroom Award, and provincial-level Excellent Guidance Teacher accolades. Additionally, Zhao earned the third prize of Liaoning Provincial Natural Science Academic Achievement Award, underscoring his research excellence and educational impact at both provincial and institutional levels.

🔮 Legacy and Future Contributions

Guangdi Zhao’s legacy is grounded in his dedication to advancing metallurgical science through high-impact research, leadership, and mentorship. As associate dean, he shapes academic policies and fosters innovation in materials education. Zhao’s future contributions are expected to expand international collaborations, explore novel alloy systems, and enhance industrial applications of his research. His commitment to student development ensures a lasting impact on the next generation of scientists, positioning him as a leading figure in China’s materials science community.

Publications Top Notes

  • Title: Effect of homogenization treatment on the microstructure evolution and hot deformation behavior of hard-deformed superalloy GH4975
    Authors: Zhao Guangdi, Zang Ximin, Sun Yixuan, Xin Xin, Li Xue, Wang Lide, Wang Li
    Journal: Materials Science and Engineering: A
    Year: 2025

  • Title: Role of carbides on hot deformation behavior and dynamic recrystallization of hard-deformed superalloy U720Li
    Authors: Guangdi Zhao, Ximin Zang, Yuan Jing, Nan Lü, Jinjiang Wu
    Journal: Materials Science and Engineering: A
    Year: 2021

  • Title: Microstructure and hot ductility behavior of Ni-based superalloy U720Li with boron addition
    Authors: Guang-Di Zhao, Fang Liu, Xi-Min Zang, Wen-Ru Sun
    Journal: Rare Metals
    Year: 2021

  • Title: Role of carbon in modifying solidification and microstructure of a Ni-based superalloy with high Al and Ti contents
    Authors: Guang-di Zhao, Xi-min Zang, Wen-ru Sun
    Journal: Journal of Iron and Steel Research International
    Year: 2021

Yidong Zhang | Experimental methods | Best Researcher Award

Dr. Yidong Zhang | Experimental methods | Best Researcher Award

Beijing University of Posts and Telecommunications | China

Yidong Zhang is an emerging scientist specializing in the growth of silicon-based III-V materials and their applications in the high-quality growth of GaAs heteroepitaxial layers. Holding a doctoral degree awarded at Beijing University of Posts and Telecommunications (BUPT) in 2024, he is currently a postdoctoral fellow at the same institution. His research focuses on cutting-edge quantum mechanics and material science, aiming to advance semiconductor technologies through innovative approaches in material growth.

👨‍🎓Profile

Scopus

📚 Early Academic Pursuits

Yidong Zhang’s academic journey began with a keen interest in the intersection of physics and material science, which led him to pursue advanced studies at BUPT. During his doctoral studies, Zhang delved into topics related to material fabrication and quantum mechanics, particularly focusing on heteroepitaxy and substrate preparation for GaAs growth on silicon wafers. His passion for cutting-edge research and technical innovation drove him to explore this challenging area of material science.

💼 Professional Endeavors

As a postdoctoral fellow at BUPT, Yidong Zhang is continuing his work in the field of semiconductor material growth. His professional endeavors are centered on addressing complex challenges in the heteroepitaxial growth of GaAs layers, with a particular emphasis on developing sub-nano streaky surfaces on Si (001) substrates. This innovative research has the potential to significantly improve the quality and performance of III-V semiconductor materials, which are vital for advanced electronics and optoelectronics.

🔬 Contributions and Research Focus

Zhang’s primary research focus is on the fabrication and application of high-quality GaAs heteroepitaxial layers, with an emphasis on substrate surface preparation. The work on the Si (001) substrate with sub-nano streaky surfaces is crucial as it enables better material integration and growth precision, leading to enhanced performance in semiconductor devices. His contributions in the field of silicon-based III-V material growth are poised to advance semiconductor technology, especially in areas such as high-speed electronics and optical communications.

🌍 Impact and Influence

Yidong Zhang’s research is positioned to make a significant impact in the semiconductor industry. His innovative work in substrate preparation and material growth techniques has the potential to influence high-performance electronics, solar cells, LEDs, and laser technologies. Zhang’s approach is likely to transform industry standards by offering a more cost-effective and precise method for growing high-quality semiconductor materials. His work could ultimately enable the development of next-generation devices with enhanced efficiency and performance.

📑 Academic Cites

While Yidong Zhang’s publication record is still emerging, his research has been well-received in the academic community, with growing interest in his work on Si (001) substrate preparation and GaAs heteroepitaxy. As his body of work expands, the citations of his publications are expected to increase, further cementing his position as a leading researcher in the field of material science and semiconductor technology.

🛠️ Research Skills

Dr. Yidong Zhang demonstrates a strong command of several research skills, including experimental design, material characterization, and quantum mechanical simulations. His expertise in substrate preparation techniques, coupled with his knowledge of semiconductor growth processes, equips him with the necessary tools to tackle complex challenges in the field of heteroepitaxy. He has a high level of proficiency in nano-scale fabrication and materials analysis, making him a valuable asset in any research team focused on advanced material science.

👨‍🏫 Teaching Experience

As a postdoctoral fellow, Zhang has had opportunities to mentor graduate students and research assistants at BUPT. His role involves guiding students through complex experimental setups, helping them develop critical research skills, and encouraging a hands-on approach to material science. His commitment to education and knowledge sharing ensures the continued growth of the next generation of researchers in quantum mechanics and material fabrication.

🏅 Awards and Honors

Yidong Zhang’s early academic career has already been marked by several academic achievements, including the award of a Doctoral degree in 2024. While he is at the beginning of his postdoctoral journey, Zhang is a strong contender for recognition in the research community, particularly through awards like the Best Researcher Award. His work is likely to attract further accolades as it continues to push the boundaries of material science and semiconductor technology.

🌱 Legacy and Future Contributions

As Yidong Zhang progresses in his career, his legacy in the field of semiconductor research will likely be defined by his contributions to high-quality material growth techniques and the advancement of silicon-based III-V heteroepitaxy. His future contributions could lead to game-changing advancements in electronics and optoelectronics, as his work has the potential to revolutionize semiconductor integration. Looking ahead, Zhang’s research will continue to influence both academia and industry, laying the groundwork for next-generation technologies.

Publications Top Notes

The Si (001) substrate with sub-nano streaky surface: Preparation and its application to high-quality growth of GaAs heteroepitaxial-layer

  • Authors: Yidong Zhang, Jian Li, Xiaomin Ren, Chuanchuan Li, Xin Wei
    Journal: Applied Surface Science
    Year: 2024

InAs/GaAs quantum-dot lasers grown on on-axis Si (001) without dislocation filter layers

  • Authors: Yongli Wang, Bojie Ma, Jian Li, Xin Wei
    Journal: Optics Express
    Year: January 2023

Rapid and facile characterization of dislocations in cross-sectional GaAs/Si films using electron channeling contrast imaging

  • Authors: Chen Jiang, Hao Liu, Jian Li, Qi Wang
    Journal: Conference Paper
    Year: January 2023

Demonstration of room-temperature continuous-wave operation of InGaAs/AlGaAs quantum well lasers directly grown on on-axis silicon (001)

  • Authors: Chen Jiang, Hao Liu, Jun Wang, Yongqing Huang
    Journal: Applied Physics Letters
    Year: August 2022

 

 

Suparna Kar Chowdhury | Experimental methods | Women Researcher Award

Prof. Suparna Kar Chowdhury | Experimental methods | Women Researcher Award

Jadavpur University | India

Dr. Suparna Kar Chowdhury is a distinguished Professor in the Electrical Engineering Department at Jadavpur University, Kolkata, India. With a career spanning over three decades, she has earned recognition for her deep expertise in machine analysis and design. As a senior IEEE member and an active volunteer, Dr. Chowdhury is a leading figure in both academic and professional circles in Electrical Engineering.

👨‍🎓Profile

Scopus

ORCID

Early Academic Pursuits 🎓

Dr. Chowdhury’s journey in Electrical Engineering began when she graduated in 1987 from Jadavpur University, Kolkata. She continued to excel academically, earning her M.Tech degree in Electrical Engineering from the prestigious Indian Institute of Technology (IIT), Kharagpur, in 1989. Her commitment to learning and her strong academic foundation led her to pursue a Ph.D. in Electrical Engineering from Jadavpur University in 2000, where she expanded her knowledge in advanced topics within the field.

Professional Endeavors 💼

After her graduation, Dr. Chowdhury briefly worked as an engineer at M/S M N Dastur & Co., gaining practical industry experience. In 1990, she began her academic career as an Assistant Professor at Jadavpur University and quickly gained recognition for her contributions to the academic community. Over the years, she has climbed the ranks, ultimately achieving the position of Professor in the Electrical Engineering Department, where she continues to inspire future engineers.

Contributions and Research Focus 🔬

Dr. Chowdhury’s research focus lies in machine analysis and design. She has made significant contributions to the advancement of these fields, publishing around 40 papers in National and International conferences and journals. Her research is aimed at improving the design and efficiency of electrical machines, and she has played a key role in shaping the landscape of machine engineering through her innovative studies.

Impact and Influence 🌍

As a senior member of IEEE (USA) and a leader in the IEEE Kolkata Section, Dr. Chowdhury has had a substantial impact on the global engineering community. Her leadership roles, including serving as section secretary, treasurer, and chair of the Power & Energy chapter, have allowed her to influence the growth and development of the IEEE Kolkata Section. Through these leadership positions, Dr. Chowdhury has contributed to expanding the reach of IEEE’s initiatives in India and globally.

Academic Cites 📑

With a vast publication record and extensive involvement in academic circles, Dr. Chowdhury has contributed to numerous research endeavors, producing impactful work that has shaped the current understanding of machine design and analysis. Her publications have garnered attention within the academic community, and her research insights continue to influence future studies in the field.

Research Skills 🔧

Dr. Chowdhury’s research skills encompass advanced machine design, electrical system modeling, and optimization techniques. She has worked on complex analytical methods to solve engineering challenges, contributing to her reputation as an expert in the field of electrical machine analysis. Her ability to bridge theoretical knowledge with practical application has made her research highly valuable to both academia and industry.

Teaching Experience 🏫

As an Assistant Professor and later as a Professor, Dr. Chowdhury has been an influential educator, guiding students in the Electrical Engineering Department at Jadavpur University. With over three decades of teaching experience, she has mentored numerous students and has successfully supervised five Ph.D. theses and sixteen M.E. theses. Her commitment to education and student development remains a key part of her legacy.

Awards and Honors 🏅

Dr. Chowdhury has received multiple accolades for her academic and professional contributions. Notably, her status as a senior member of IEEE and her leadership roles within the IEEE Kolkata Section underscore her commitment to advancing electrical engineering. These honors reflect her dedication and passion for the field, as well as her ability to inspire others.

Legacy and Future Contributions 🌱

Dr. Suparna Kar Chowdhury’s legacy lies in her remarkable impact on machine analysis and design in Electrical Engineering, as well as her leadership within the IEEE community. She has left a lasting mark on both her students and colleagues through her innovative research, mentorship, and service. Looking forward, Dr. Chowdhury is expected to continue advancing research in machine analysis, contributing to sustainable technologies, and inspiring the next generation of engineers. Her continued commitment to academia and research excellence will undoubtedly shape the future of Electrical Engineering.

Publications Top Notes

  • Estimation of Induction Motor Equivalent Circuit Parameters and Losses from Transient Measurement
    Authors: Diptarshi Bhowmick, Suparna Kar Chowdhury
    Year: Dec 2024

  • A New Nonisolated Bidirectional DC-DC Converter with High Voltage Conversion Ratio
    Authors: Supratik Sikder, Debashis Chatterjee, Suparna Kar Chowdhury
    Year: Dec 2023

  • Performance analysis of different rotor configuration of LSPMSM for Electric Vehicles
    Authors: Mousumi Jana Bala, Chandan Jana, Suparna Kar Chowdhury, Nirmal Kumar Deb
    Year: Dec 2022

  • Sensor Less Performance Estimation of Induction Motor
    Authors: Diptarshi Bhowmick, Suparna Kar Chowdhury
    Year: Dec 2022

  • Performance and Temperature Estimation of Induction Motor from Transient Measurement
    Authors: Diptarshi Bhowmick, Suparna Kar Chowdhury
    Year: Dec 2020