Duyang Zang | Experimental methods | Best Researcher Award

Prof. Duyang Zang | Experimental methods | Best Researcher Award

Northwestern Polytechnical University | China

Duyang Zang is a professor in the School of Physical Science and Technology at Northwestern Polytechnical University, China. He holds a PhD in Physics from Paris-Sud University (2010) and has since become a leading figure in soft matter physics. His research spans topics such as capillary phenomena, interfacial rheology, and the dynamics of droplets and bubbles, with a particular focus on acoustic levitation. With a remarkable academic record, Zang has authored over 90 peer-reviewed journal papers and two books.

šŸ‘Øā€šŸŽ“ Profile

Scopus

Orcid

šŸŽ“ Early Academic Pursuits

Duyang Zang’s academic journey began with a deep interest in physics, leading him to earn his PhD in 2010 from Paris-Sud University. During his doctoral studies, he focused on complex systems and their physical behaviors at the interfaces, an area that would become central to his later research career. His foundational work laid the groundwork for his specialization in soft matter physics.

šŸ’¼ Professional Endeavors

Currently, Zang is a professor at Northwestern Polytechnical University, where he continues to lead cutting-edge research in soft matter dynamics. Over the past decade, Zang has managed and contributed to over 10 major scientific projects funded by the National Natural Science Foundation of China and the Ministry of Education. His research is not limited to traditional soft matter studies but also explores the innovative application of acoustic levitation to manipulate soft matter systems.

šŸ”¬ Contributions and Research Focus

Zang’s work is at the forefront of soft matter physics, focusing on the physics and dynamics of interfaces in complex and soft matter systems. His key research areas include:

  • Capillary phenomena: Understanding how liquids interact with surfaces at a microscopic level.
  • Interfacial rheology: Investigating how soft materials behave under stress and deformation.
  • Droplet and bubble dynamics: Studying the movement, stability, and behavior of droplets and bubbles in various systems.
  • Phase behaviors: Exploring how materials transition between different phases, such as from liquid to gas or solid to liquid.

A particularly innovative aspect of his research is the exploration of combining soft matter physics with acoustic levitation, which enables novel ways of manipulating matter without physical contact.

šŸ“ˆ Academic Cites

Zang’s extensive body of work is reflected in his impressive citation count of more than 2,700 citations, with an h-index of 30 (as per Scopus). This demonstrates his significant and sustained influence in the scientific community, with numerous researchers building upon his findings to explore new areas of study.

🧠 Research Skills

Zang is recognized for his strong analytical and experimental research skills, which have enabled him to conduct groundbreaking work on interfacial phenomena and phase transitions. His ability to integrate theoretical models with experimental observations has made him a leader in both fundamental and applied research in soft matter physics. Additionally, his work in acoustic levitation showcases his ability to merge innovative technologies with classical research areas.

šŸ« Teaching Experience

As a professor, Zang is deeply committed to the education and mentorship of the next generation of physicists. He has taught various courses, including those on soft matter physics and complex systems. His teaching extends beyond formal classrooms as he also participates in academic panels, conferences, and research guidance, offering valuable mentorship to graduate students and young researchers.

šŸ… Awards and Honors

Duyang Zang’s work has earned him prestigious recognitions such as:

  • Top 10 Emerging Scientists Award of China (2018)
  • IAAM Scientist Medal (2021)
  • Fellow of the International Association of Advanced Materials (IAAM)
    His achievements are further underscored by his role on the editorial boards of leading journals like European Physical Journal E, Frontiers in Soft Matter, and Soft Matter.

🌟 Legacy and Future Contributions

Zang’s contributions have set the stage for continued advances in soft matter physics, especially in its application to new technologies and innovative materials. As a thought leader, he is likely to continue influencing the field by addressing complex challenges, such as dynamic interfaces and material design. Zang’s work, particularly in acoustic levitation, could open new frontiers in areas like biotechnology, nanotechnology, and advanced manufacturing.

Ā  Publications Top Notes

Anisotropic growth dynamics of liquid bridge during droplet coalescence under acoustic levitation

  • Authors: Hongyue Chen, Xianyu Nong, Bokun Zhao, Wenxuan Zhong, Kangqi Liu, Zhen Chen, Duyang Zang
    Journal: Physical Review Fluids
    Year: 2025

Atomization by Acoustic Levitation Facilitates Contactless Microdroplet Reactions

  • Authors: Xiaoxu Li, Xianyu Nong, Chenghui Zhu, Xufeng Gao, Huan Chen, Xu Yuan, Dong Xing, Lu Liu, Chiyu Liang, Duyang Zang et al.
    Journal: Journal of the American Chemical Society
    Year: 2024

Ultrasound induced grain refinement of crystallization in evaporative saline droplets

  • Authors: Xiaoqiang Zhang, Hongyue Chen, Yuhan Wang, Xin Gao, Zhijun Wang, Nan Wang, Duyang Zang
    Journal: Ultrasonics Sonochemistry
    Year: 2024

Extraordinary stability of surfactant‐free bubbles suspended in ultrasound

  • Authors: Xiaoliang Ji, Wenxuan Zhong, Kangqi Liu, Yichen Jiang, Hongyue Chen, Wei Zhao, Duyang Zang
    Journal: Droplet
    Year: 2024

Toward Enhanced Aerosol Particle Adsorption in Never‐Bursting Bubble via Acoustic Levitation and Controlled Liquid Compensation

  • uthors: Xiaoliang Ji, Pingsong Jiang, Yichen Jiang, Hongyue Chen, Weiming Wang, Wenxuan Zhong, Xiaoqiang Zhang, Wei Zhao, Duyang Zang
    Journal: Advanced Science
    Year: 2023

 

Hosameldeen Elshekh | Experimental methods | Best Researcher Award

Dr. Hosameldeen Elshekh | Experimental methods | Best Researcher Award

Dr. Hosameldeen Elshekh | Southwest jiaotong University | China

šŸ‘Øā€šŸŽ“ Profile

šŸŽ“ Early Academic Pursuits

Dr. Hosameldeen Elhadi Abdelrhman Elshekh began his academic journey with a B.Ed. (Honors) in Physics and Mathematics from the University of Gezira, Sudan, in 2009. His exceptional performance and passion for physics and materials science paved the way for his higher education. He earned an M.Sc. in Physics from the same institution in 2016, followed by an M.Sc. Qualifying in Physics from the University of Khartoum in 2013. Currently, he is pursuing a Ph.D. in Physics at Southwest Jiaotong University, China, where he has been conducting advanced research since 2018.

šŸ« Professional Endeavors

Dr. Hosameldeen’s professional journey commenced as a University Teaching Assistant at the University of Gezira, Sudan (2011–2014). He later progressed to a Physics Lecturer role (2016–2018), where he developed undergraduate physics courses and mentored students. His focus on curriculum innovation and science outreach programs highlights his dedication to fostering education and promoting science in the community.

šŸ”¬ Contributions and Research Focus

With expertise inĀ material science,Ā nanomaterials, andĀ memristive devices, Hosameldeen specializes inĀ thin filmsĀ and theirĀ electrical and magnetic properties. His research integratesĀ theoretical and experimental physics, focusing onĀ memristors, resistive switching memory, and nanostructured materials. His work includes advanced synthesis techniques likeĀ electrochemical oxidationĀ andĀ magnetron sputtering, along with material characterization usingĀ SEM,Ā EDS, andĀ XRD.

šŸŒ Impact and Influence

Dr. Hosameldeen has co-authored nine SCI-indexed publications, contributing to advancements in resistive switching memory and bioelectronic devices. His collaborative research with peers worldwide reflects his commitment to fostering interdisciplinary partnerships. His work on TiOx-based memristors and MoSe2 nanosphere arrays demonstrates the potential of his innovations in sustainable technologies and electronics.

šŸ“š Academic Citations

Dr. Hosameldeen’s contributions are recognized globally, with his publications indexed in Web of Science, Google Scholar, and ResearchGate. His research on WOx/TiOy heterojunctions and Zn-Al nanosheets-based memristors has been widely cited, underscoring his influence in the field of materials physics.

šŸ› ļø Technical Skills

Hosameldeen excels inĀ synthesis and characterization of nanomaterials, with hands-on expertise in tools likeĀ SEM,Ā EDS,Ā XRD, and advanced techniques likeĀ electrochemical oxidation. His skills in developing and testingĀ memristive devicesĀ andĀ thin-film materialsĀ are complemented by his ability to design and implementĀ laboratory modulesĀ for educational purposes.

šŸ‘Øā€šŸ« Teaching Experience

With over eight years of teaching experience, Hosameldeen has demonstrated excellence inĀ curriculum development,Ā student mentoring, andĀ laboratory instruction. At the University of Gezira, he played a pivotal role in modernizing the physics curriculum and conductingĀ research workshops. His dedication toĀ science outreach programsĀ showcases his passion for empowering students and local communities through education.

🌟 Legacy and Future Contributions

Dr. Hosameldeen’s research is shaping the future of nanotechnology and electronic devices, offering innovative solutions to scientific challenges. His commitment to advancing materials science and mentoring the next generation of scientists cements his legacy as an influential educator and researcher. Looking ahead, he aims to expand his contributions to global scientific collaboration and continue his exploration of sustainable material technologies.

Top Noted Publications

Nonvolatile behavior of resistive switching memory in Ag/WOx/TiOy/ITO device based on WOx/TiOy heterojunction
  • Authors: Hosameldeen Elshekh, Hongyan Wang, Chuan Yang, Shouhui Zhu
    Journal: Journal of Applied Physics
    Year: 2024
Nonvolatile resistive switching memory behavior of the TiOx-based memristor
  • Authors: Hosameldeen Elshekh, Hongyan Wang, Shouhui Zhu, Chuan Yang, Jiangqiu Wang
    Journal: Chemical Physics
    Year: 2024
An excellent resistive switching memory behaviour based on assembled MoSe2 nanosphere arrays
  • Authors: Mao Shuangsuo, Hosameldeen Elshekh, Mayameen S. Kadhim, Yudong Xia, Guoqiang Fu, Wentao Hou, Yong Zhao, Bai Sun
    Journal: Journal of Solid State Chemistry
    Year: 2019
Effect of crystalline state on conductive filaments forming process in resistive switching memory devices
  • Authors: Guo Tao, Hosameldeen Elshekh, Zhou Yu, Bo Yu, Dan Wang, Mayameen S. Kadhim, Yuanzheng Chen, Wentao Hou, Bai Sun
    Journal: Materials Today Communications
    Year: 2019
The pH-controlled memristive effect in a sustainable bioelectronic device prepared using lotus root
  • Authors: Li T, Y. Xu, M. Lei, Y. Zhao, B. Sun, Hosameldeen Elshekh, L. Zheng, X. Zhang, W. Hou
    Journal: Materials Today Sustainability
    Year: 2020