Guangming Tao | Interactions and fields | Best Paper Award

Prof. Guangming Tao | Interactions and fields | Best Paper Award

Professor at Huazhong University of Science and Technology, China

Professor Guangming Tao is a distinguished academic at the Huazhong University of Science and Technology (HUST) in Wuhan, China. He serves as a Professor at both the Wuhan National Laboratory for Optoelectronics and the School of Materials Science and Engineering, and also leads as Director of the Sports and Health Initiative at the Optics Valley Laboratory. With a prolific academic journey rooted in optics and advanced materials, Prof. Tao has become an internationally recognized leader in wearable photonic technologies, metatextiles, and fiber-based smart systems, boasting over 120 research papers and ~6500 citations as of 2025.

👨‍🎓Profile

Google scholar

Scopus

ORCID

🎓 Early Academic Pursuits

Prof. Tao began his academic journey with a Bachelor’s degree in Optical Information Science and Technology from Shandong University (2006-2009). He then earned a Master’s in Optics from Fudan University, further deepening his expertise in light-based technologies. Driven by a strong research inclination, he pursued his Ph.D. in Optics at the University of Central Florida (CREOL), under the guidance of Prof. Ayman Abouraddy. His early academic focus laid a robust foundation in photonic materials, optical fiber design, and fabrication techniques, which later evolved into interdisciplinary applications in wearables, health monitoring, and energy-efficient devices.

🧑‍💼 Professional Endeavors 

Following his Ph.D., Prof. Tao continued at CREOL, University of Central Florida, serving as a Research Scientist (2014–2015) and later as a Senior Research Scientist (2015–2017). In 2017, he returned to China to join HUST as a full professor. At HUST, he leads multiple initiatives spanning materials science, optoelectronics, and smart textiles. As Director at Optics Valley Laboratory, he coordinates research that bridges fundamental science with real-world applications, notably in sports health, environmental sensing, and interactive display systems. His work emphasizes scalability, interactivity, and energy efficiency, making significant contributions to national and global research programs.

🔬 Contributions and Research Focus

Prof. Tao’s research is centered around wearable optoelectronics, fiber-based intelligent systems, and metamaterials for thermal regulation. He has pioneered innovations such as photochromic fiber displays, cooling metafabrics, and smart electronic cords. His published work includes breakthroughs in Science, Light: Science & Applications, Advanced Materials, and Nature Communications. His group focuses on designing materials that combine mechanical comfort, visual functionality, and energy autonomy, enabling advances in smart clothing, health monitoring, and adaptive camouflage. His innovations bridge the gap between lab-scale photonics and consumer-level smart textiles, defining new paradigms in functional wearables.

🌍 Impact and Influence

With over 6500 citations, Prof. Tao’s research has had a broad international impact across optics, materials science, wearable electronics, and environmental engineering. His innovations are shaping next-generation smart fabrics and redefining how textiles interact with light and temperature. His passive radiative cooling metafabrics, recognized by Science, are now a reference in sustainable energy management. His photochromic fiber displays are transforming interactive wearables, making them lighter, more responsive, and energy-efficient. Through international collaborations and open-access dissemination, he has become a thought leader, influencing both academic peers and industrial developers in smart material systems.

📚 Academic Citations

Prof. Tao’s scholarly influence is marked by 120+ peer-reviewed publications and ~6500 citations (as of July 2025), with papers featured in top-tier journals such as Science, Nature Communications, Advanced Materials, and Light: Science & Applications. His most cited works include “Hierarchical-morphology metafabric” (Science 2021) and “Imperceptible braided electronic cord” (Nat. Commun. 2022). His research is consistently referenced in studies on thermal textiles, wearable sensors, and adaptive optics, underlining his central role in advancing interdisciplinary material technologies. His H-index and citation velocity reflect both the depth and growing relevance of his contributions to global innovation.

🧪 Research Skills

Prof. Tao possesses a unique combination of expertise in optics, nanofabrication, polymer processing, and textile integration. His core skills include fiber optics design, photochromic materials engineering, thermal management systems, and flexible electronics integration. He excels at converting advanced material science principles into functional, wearable prototypes. He leads multi-institutional projects, efficiently managing teams with diverse backgrounds. His capability to develop scalable fabrication processes makes his innovations ready for mass production and real-world adoption. With strong analytical and experimental skills, he bridges the gap between laboratory innovation and commercial application, often delivering solutions tailored to healthcare, environment, and defense sectors.

🧑‍🏫 Teaching Experience 

At Huazhong University of Science and Technology, Prof. Tao teaches courses in Optoelectronics, Advanced Materials, and Smart Textiles to undergraduate and graduate students. He actively supervises Ph.D. and Master’s students, many of whom have received national scholarships and awards. His mentorship emphasizes interdisciplinary thinking, hands-on experimentation, and innovation-driven research. He integrates cutting-edge research topics into his teaching, fostering a research-intensive learning environment. Through seminars, workshops, and lab training, he cultivates the next generation of scientists in wearable technologies and functional materials. His teaching philosophy is centered on curiosity, creativity, and cross-border collaboration.

🏆 Awards and Honors

Prof. Tao has earned multiple accolades recognizing his scientific innovation and leadership. These include Best Paper Awards, invitations to international keynote speeches, and governmental research grants supporting national-level projects. His paper on radiative cooling metafabric gained global attention and has been cited in climate and textile engineering domains. He has been nominated for awards in smart wearable innovation and advanced materials research, reflecting his broad influence. His leadership at the Optics Valley Laboratory and his role in large-scale interdisciplinary projects showcase his visionary direction in research. His consistent recognition affirms his place among leading figures in wearable photonics.

🔮 Legacy and Future Contributions

Prof. Guangming Tao is shaping the future of smart materials and functional fabrics. His legacy lies in merging fundamental optics with wearable systems, setting new benchmarks in interactive textiles and adaptive materials. Looking forward, he aims to expand into bio-integrated systems, AI-driven textile interfaces, and next-gen photonic skin for healthcare and defense. He envisions a world where textiles are not passive layers, but intelligent interfaces interacting seamlessly with users and the environment. Through global collaborations, mentorship, and technology transfer, Prof. Tao is committed to pushing scientific boundaries while ensuring that innovations reach and benefit society at large.

Publications Top Notes

Radiation-modulated thermoelectric fabrics for wearable energy harvesting

  • Authors: Y. Wang, H. Liu, S. Zhang, G. Tao, C. Liu, C. Shen

  • Journal: National Science Review

  • Year: 2025

Stretchable polymer optical fiber with an unusual relationship between optical loss and elongation

  • Authors: W. Wang, Z. Li, R. Zhao, Y. He, G. Tao, C. Hou

  • Journal: Journal of Lightwave Technology

  • Year: 2024

All-polymer aqueous fiber battery for sustainable electronics

  • Authors: M. Yang, G. Tao, M. Zhu, C. Hou

  • Journal: Advanced Fiber Materials

  • Year: 2025

Scalable hierarchical‐colored passive cooling Metapaint for outdoor facility

  • Authors: M. Yang, Z. Zhou, M. Liu, J. Wu, J. Li, J. Liang, S. Zhang, M. Chen, H. Zeng, X. Li, G. Tao, et al.

  • Journal: EcoMat

  • Year: 2024

Cooling textiles provide a new solution to urban heat islands

  • Authors: Z. Li, S. Zhang, Z. Yang, Z. Liang, N. Zhou, G. Tao, C. Hou

  • Journal: Advanced Fiber Materials

  • Year: 2024

 

 

Madeha Awad | Experimental methods | Best Researcher Award

Assoc. Prof. Dr. Madeha Awad | Experimental methods | Best Researcher Award

Sohag university  | Egypt

Dr. Madeha Ahmed Aboelfadl Awad is an Associate Professor in the Physics Department at the Faculty of Science, Sohag University, Egypt. With a career spanning nearly two decades in materials science and nanotechnology, she has become a prominent figure in the synthesis and characterization of advanced nanostructured materials for industrial and environmental applications. Dr. Awad is recognized for her dedication to both scientific research and academic development, contributing significantly to the Egyptian scientific community.

👨‍🎓Profile

Google scholar

Scopus

🎓 Early Academic Pursuits

Dr. Awad began her academic journey with a B.Sc. in Physics from Sohag University in 2003, graduating with a very good grade. She went on to earn an M.Sc. in Solid State Physics in 2008, where she investigated chalcogenide systems a foundation that set the stage for her specialization in material sciences. Her academic excellence continued with a Ph.D. in Nanomaterials Physics in 2015, focusing on the growth and characterization of ZnO-based nanomaterials, a vital material in modern optoelectronic and energy applications.

🧪 Professional Endeavors

Since joining the Sohag University faculty in 2004 as a demonstrator, Dr. Awad has steadily progressed through academic ranks, becoming an Assistant Lecturer (2013), Lecturer (2015), and finally Associate Professor (2020). Her career reflects a sustained commitment to both academic excellence and institutional service. In addition to her teaching and research, she has held leadership roles, including Director of the Credibility and Intellectual Property Unit, playing a vital part in raising awareness about intellectual property rights and research ethics.

🔬 Contributions and Research Focus

Dr. Awad’s primary research is rooted in the synthesis of nanomaterials across various dimensions 0D, 1D, 2D, and 3D using advanced techniques like sputtering, physical vapor deposition (PVD), chemical vapor deposition (CVD), and electron beam evaporation. Her work emphasizes characterization using state-of-the-art tools such as XRD, XPS, SEM, TEM, AFM, DSC, and TGA, making her a versatile experimental physicist. Her research outcomes are directly applied to real-world challenges in solar energy, water purification, and biomedicine.

🌍 Impact and Influence

Dr. Awad’s contributions are particularly relevant to sustainable development and clean energy. Her research on photocatalytic materials, metal oxides, and optoelectronic devices supports the transition to greener technologies. As a result, her work has an evident impact on addressing climate change, environmental pollution, and public health challenges.

📚 Academic Publications

She has authored multiple peer-reviewed publications in international scientific journals, including Physica Scripta and the Journal of Sustainable Food, Water, Energy and Environment. Her recent works in 2025 reflect continued scholarly productivity and a commitment to interdisciplinary research. These publications highlight the practical application of her materials in pollution degradation, photodetectors, and biological growth studies.

🧠 Research Skills

Dr. Awad demonstrates exceptional skills in materials characterization, experimental design, and project management. She is adept at conducting analytical tests using complex laboratory equipment and integrates findings across multiple techniques to evaluate material performance. Her ability to write and manage research projects related to energy and water positions her as a key contributor in applied research arenas.

👩‍🏫 Teaching Experience

Beyond the lab, Dr. Awad is a dedicated educator, delivering theoretical physics courses to undergraduate students and supervising graduate theses and senior projects. She also plays an instrumental role in developing laboratory infrastructure, guiding demonstrators, and innovating undergraduate experiments, reflecting her strong commitment to academic excellence and mentorship.

🏆 Awards and Honors

Dr. Awad has earned respect not only through research but also through her administrative and academic service. She was appointed to the Scientific Committee of the Faculty of Science, where she helped establish a scientific journal for the Physics Department an initiative considered pioneering within her institution. While specific awards are not listed, her appointments and leadership roles signify a high level of institutional trust and recognition.

🚀 Legacy and Future Contributions

As a leader in nanomaterials research in Upper Egypt, Dr. Awad is shaping the future of industrially relevant and sustainable materials. Her contributions to intellectual property awareness, research capacity-building, and student mentorship lay a strong foundation for future generations of scientists. With continued focus on international collaboration, patentable innovations, and expanded research funding, her work is poised to achieve greater global impact in the years ahead.

Top Noted Publications

Photocatalytic characteristics of indium oxide, copper oxide and indium oxide/copper oxide thin films on plastic waste substrates for organic pollutants degradation

  • Authors: M. Mohery, S. H. Mohamed, K. A. Hamam, A. Mindil, S. Landsberger, M. A. Awad
    Journal: Physica Scripta
    Year: 2025

Influence of oxygen flow rates on the optoelectronic properties SnO₂ thin films

  • Authors: M. A. Awad, Eman R. Abaza, Essam R. Shaaban
    Journal: Sohag Journal of Science
    Year: 2025

A comparison between the effect of zinc oxide and zinc oxide nanoparticles on the growth and some metabolic processes of Cosmarium sp

  • Authors: Asmaa Bakr, M. A. Awad
    Journal: Journal of Sustainable Food, Water, Energy and Environment
    Year: 2025

Highly sensitive TiO₂ based photodetector for environmental sensing applications

  • Authors: S. H. Mohamed, Mohamed Rabia, M. A. Awad, Mohamed Asran Hassan
    Journal: Journal of Sustainable Food, Water, Energy and Environment
    Year: 2025

Optoelectronic characteristics of In₂O₃/CuO thin films for enhanced vis‑light photodetector

  • Authors: A. M. Abd El‑Rahman, S. H. Mohamed, A. Ibrahim, Ali A. Alhazime, M. A. Awad
    Journal: Journal of Materials Science: Materials in Electronics
    Year: 2024