Jianwen Yang | Experimental methods | Best Researcher Award

Assoc. Prof. Dr. Jianwen Yang | Experimental methods | Best Researcher Award

Associate Professor, Master’s Supervisor, Deputy Head of the Physics Department at Shanghai Normal University | China

Dr. Jianwen Yang is an Associate Professor at Shanghai Normal University, holding a Ph.D. in Physical Electronics from Fudan University. His primary research focus lies in oxide semiconductors and information display technologies. With significant experience in addressing instability issues in industrial devices, he has contributed to analyzing the performance of a-IGZO TFTs in companies like TSMC and AUOtronics. His innovative work in n-type tin oxide-based TFTs and indium-free doped tin oxide-based TFTs has led to breakthroughs in the field, providing devices with superior electrical characteristics.

👨‍🎓Profile

Scopus

ORCID

Early Academic Pursuits 📚

Dr. Yang’s academic journey began with a solid foundation in Physical Electronics, completing his Ph.D. at Fudan University. During his early studies, he developed a keen interest in the intersection of material science and electronics, which led him to explore oxide thin-film transistors (TFTs) as a promising avenue for future advancements. His focus on new materials and material simplification laid the groundwork for his later innovations in tin oxide-based TFTs, a critical area in the development of modern information display technologies.

Professional Endeavors 💼

Dr. Yang’s professional career has been marked by collaborations with prominent industry leaders like TSMC and AUOtronics, where he contributed to solving the instability challenges in industrialized a-IGZO TFTs. These efforts have provided valuable insights into the performance optimization of thin-film transistors, further driving the industry forward. His participation in national projects, such as those funded by the National Natural Science Foundation of China (NSFC), also highlights his commitment to advancing the field through both academic research and real-world applications.

Contributions and Research Focus 🔬

Dr. Yang’s pioneering research in n-type tin oxide-based TFTs led to the introduction of novel indium-free doped tin oxide materials like SnWO, SnSiO, and SnNiO, which have all exhibited superior electrical characteristics. His work on comparing top/bottom-gate a-IGZO TFTs under varying stress conditions provided valuable insights into threshold voltage shifts and carrier concentration variations, significantly impacting the design and stability of oxide semiconductors in practical applications. He has consistently pushed the boundaries of material research, particularly in the flexible electronics sector.

Impact and Influence 🌍

Dr. Yang’s groundbreaking research has had a profound impact on the development of oxide semiconductor devices, particularly in TFT technology. His innovative approaches have been cited in multiple review articles, and his work continues to influence both academic researchers and industry practitioners. His research on indium-free tin oxide-based TFTs has not only enriched academic literature but also paved the way for more sustainable and efficient solutions in the information display industry. The superior electrical characteristics of his materials have positioned them as viable alternatives to traditional indium-based materials, which are costly and scarce.

Academic Cites 📈

Dr. Yang has published over 38 journals in top-tier scientific databases, including SCI and Scopus, with his work receiving 11 citations. His innovative research has been referenced in numerous review articles, further establishing him as a thought leader in his field. These citations reflect the widespread recognition of his research’s significance, and his publications continue to influence the academic community’s understanding of oxide semiconductors and TFT stability.

Research Skills 🛠️

Dr. Yang’s research skills span a wide range of disciplines, from material science to electronic device engineering. His expertise in thin-film transistor design, instability analysis, and new material development has allowed him to push the envelope in semiconductor research. He is particularly skilled in analyzing the electrical performance of TFTs under various stress conditions, demonstrating an acute understanding of the intricate relationship between material properties and device functionality. Additionally, his work in flexible electronics is a testament to his ability to innovate in emerging areas.

Teaching Experience 👩‍🏫

As an Associate Professor at Shanghai Normal University, Dr. Yang has been involved in educating and mentoring the next generation of scientists and engineers. He brings his extensive research experience into the classroom, enriching students’ learning experiences. Dr. Yang’s teaching focuses on semiconductor physics, material science, and electronics. His dedication to student development is evident in his guidance of graduate students and the collaborative environment he fosters for academic exploration.

Awards and Honors 🏅

Dr. Yang’s contributions have been recognized by several prestigious national research organizations, including the National Natural Science Foundation of China. His research projects, such as the Study on the Instability of Flexible Amorphous SnSiO Thin Film Transistors, have earned him respect in the academic community and have helped elevate Shanghai Normal University‘s status in the field of electronic materials research.

Legacy and Future Contributions 🔮

Dr. Yang’s research legacy lies in his innovative contributions to oxide semiconductor technology and his dedication to finding sustainable solutions for the electronics industry. His ongoing research projects, including his work on the 345GHz Submillimeter Wave Sideband Separation Receiver for LCT Telescope, show his commitment to exploring cutting-edge technologies. Moving forward, Dr. Yang plans to continue refining indium-free tin oxide-based TFTs and explore their industrial scalability. His work has the potential to impact a variety of industries, from flexible displays to advanced sensors, shaping the future of electronic materials.

Publications Top Notes

Exploring soil-buoyancy interactions: experimental designs and educational implications for enhancing students’ scientific inquiry skills

  • Authors: Zijian Gu, Jianwen Yang
    Journal: Physics Education
    Year: 2025

Fast-response IWO/Si heterojunction photodetectors

  • Authors: Xiaochuang Dai, Jianwen Yang, Huishan Wang, Yunxi Luo, Jinying Zeng, Wangzhou Shi, Feng Liu
    Journal: Journal of Physics D: Applied Physics
    Year: 2025

Enhancement of electrical characteristics of SnGaO thin-film transistors via argon and oxygen plasma treatment

  • Authors: Yinli Lu, Xiaochuang Dai, Jianwen Yang, Ying Liu, Duo Cao, Fangting Lin, Feng Liu
    Journal: Vacuum
    Year: 2024

Preparation of chalcogenide perovskite SrHfS3 and luminescent SrHfS3:Eu2+ thin films

  • Authors: Yanbing Han, Jiao Fang, Yurun Liang, Han Gao, Jianwen Yang, Xu Chen, Yifang Yuan, Zhifeng Shi
    Journal: Applied Physics Letters
    Year: 2024

Degradation Behavior of Etch-Stopper-Layer Structured a-InGaZnO Thin-Film Transistors Under Hot-Carrier Stress and Illumination

  • Authors: Dong Lin, Wan-Ching Su, Ting-Chang Chang, Hong-Chih Chen, Yu-Fa Tu, Kuan-Ju Zhou, Yang-Hao Hung, Jianwen Yang, I-Nien Lu, Tsung-Ming Tsai et al.
    Journal: IEEE Transactions on Electron Devices
    Year: 2021

 

 

Sanjiv Kane | Experimental methods | Best Innovation Award

Mr. Sanjiv Kane | Experimental methods | Best Innovation Award

Scientific Officer at Raja Ramanna Centre for Advanced Technology | India

A Distinguished Scientific Officer in Applied Physics and Synchrotron Radiation

Sanjiv R. Kane is an experienced Scientific Officer with over 25 years of expertise in applied physics, particularly in synchrotron radiation and advanced instrumentation. He is currently pursuing a Ph.D. in Applied Physics at the Maharaja Sayajirao University of Baroda (2023–Present), focusing on advancing the fields of control systems, data acquisition software, and beamline technology. His proven experience spans across several prominent research facilities, including the Indus Synchrotron Facility and CERN, where he has contributed immensely to both research and technology development.

👨‍🎓Profile

Google scholar

Scopus

ORCID

📚 Early Academic Pursuits

Sanjiv started his academic journey by earning a Bachelor of Science in Physics with minors in Mathematics and Statistics from the University of Poona (1984–1987). He further pursued his Master of Science in Applied Physics at the University of Poona (1987–1989), where he laid the foundation for his extensive career in applied physics and instrumentation design.

💼 Professional Endeavors

 Since June 1999, Sanjiv has served as a Scientific Officer at the Indus Synchrotron Facility, Raja Ramanna Centre for Advanced Technology, Indore, India, where he has worked on numerous high-profile projects. His notable contributions include the development of VME-based control systems, PLC safety interlocks, and the automation of beamline operations. His efforts in designing and deploying data acquisition systems using National Instruments LabVIEW® have been crucial in advancing the synchrotron facility’s capabilities. Additionally, he has been instrumental in designing FPGA-based DAQ systems and PXI system deployments for beamline control.

🔬 Contributions and Research Focus

Sanjiv’s research is centered on synchrotron radiation, particularly in the design and development of control systems for X-ray beamlines and instrumentation. His work on extended X-ray absorption fine structure (EXAFS), soft X-ray reflectivity, and nonlinear behavior of piezoceramic actuators has gained significant attention in the field. He has co-authored several important publications, contributing to the advancement of both material characterization and synchrotron beamline technology.

🌍 Impact and Influence

 Sanjiv’s contributions have made a significant impact on synchrotron radiation research, particularly in beamline automation and data acquisition systems. His international collaborations at CERN and Indus Synchrotron Facility have helped improve the performance of synchrotron radiation facilities, making them more efficient and accessible to researchers worldwide. His papers and conference presentations continue to influence the direction of research in synchrotron instrumentation and applied physics.

📚 Academic Cites

Sanjiv’s work has been widely cited in notable academic journals and has been presented at prestigious international conferences. His publications in journals such as Nuclear Instruments and Methods in Physics Research, Rev. Sci. Instrum., and Mechanics of Advanced Materials and Structures have contributed significantly to the development of synchrotron radiation technologies. Notable works include:

  1. “Extended X-ray Absorption Fine Structure (EXAFS) measurement of Cu metal foil using thermal wave detector: A comparative study.”
  2. “A versatile beamline for soft x-ray reflectivity, absorption, and fluorescence measurements at Indus-2 synchrotron source.”
  3. “Electric field-induced nonlinear behavior of lead zirconate titanate piezoceramic actuators in bending mode.”

🔧 Research Skills

Sanjiv’s technical expertise spans several areas including:

  • Instrumentation & Control: VME systems, PLC programming (Siemens Step 7), microcontroller-based systems (ARM, 8051).
  • Programming Languages: Proficient in LabVIEW®, C/C++, Python, Visual Basic, and VEEPRO.
  • Design & Simulation: Expertise in Altium Designer, Protel, ISE (FPGA design), NI Multisim, and Electronic Workbench.
  • Data Acquisition & Analysis: In-depth experience in developing FPGA-based DAQ systems, PXI systems, and database management using Microsoft Access.

👨‍🏫 Teaching Experience

Sanjiv has extensive experience in training and mentoring junior researchers and scientists in the areas of control systems and instrumentation for synchrotron radiation. His involvement in numerous workshops, symposia, and conferences allows him to share his expertise with others in the field.

🌱 Legacy and Future Contributions

Sanjiv’s legacy lies in his contributions to synchrotron radiation research, particularly in improving beamline automation and X-ray measurement systems. As he continues his Ph.D. journey, his future contributions will likely focus on advanced control systems and enhancements to synchrotron facilities. His ongoing work promises to make lasting improvements in the development of synchrotron instrumentation that will support the scientific community in material science, biotechnology, and physics research.

Publications Top Notes

Characterizing Pyroelectric Detectors for Quantitative Synchrotron Radiation Measurements

  • Authors: SR Kane, RW Whatmore, MN Singh, S Satapathy, PK Jha, PK Mehta
    Journal: Sensors and Actuators A: Physical
    Year: 2025

Development of Piezo-actuated X-ray Deformable Mirror for Vertical Focusing of Synchrotron Radiation at Indus-2

  • Authors: HSK Jha, AK Biswas, MK Swami, A Sagdeo, C Mukherjee, SR Kane, …
    Journal: Nuclear Instruments and Methods in Physics Research Section A: Accelerators
    Year: 2024

Green Protocol For Synthesis of Cu2O@g‐C3N4 Photocatalysts For 1, 4 Radical Oxidative Addition of Trans Crotonaldehyde Under Visible Light Condition

  • Authors: BA Maru, VJ Rao, S Kane, UK Goutam, CK Modi
    Journal: ChemPhotoChem
    Year: 2024

Development and Initial Results of X-ray Magnetic Circular Dichroism Beamline at Indus-2 Synchrotron Source

  • Authors: B Kiran, SR Garg, CK Garg, S Lal, SK Nath, R Jangir, SR Kane, …
    Journal: Proceedings of the Theme Meeting on Spectroscopy Using Indus Synchrotron
    Year: 2023

Facile Single-pot Synthesis of Fe-doped Nitrogen-rich Graphitic Carbon Nitride (Fe2O3/g-C3N4) Bifunctional Photocatalysts Derived from Urea for White LED-mediated Aldol Condensation Reaction

  • Authors: BA Maru, R Joshi, VJ Rao, SR Kane, CK Modi
    Journal: Inorganic Chemistry Communications
    Year: 2025