John Goff | Experimental methods | Best Researcher Award

Prof. John Goff | Experimental methods | Best Researcher Award

University of Lynchburg | United States

John Eric Goff is a Professor of Physics at the University of Lynchburg, with extensive experience in the field of sports engineering, fluid dynamics, and computational physics. Over the course of his career, he has made significant contributions to the study of aerodynamics in sports, the physics of surfaces, and optics. His academic journey began at Vanderbilt University, where he earned his B.S. in Physics and Mathematics in 1992, followed by an M.S. in Physics and Ph.D. in Physics from Indiana University. His thesis on the photon-drag effect in simple metals set the stage for his further academic pursuits and professional contributions.

👨‍🎓 Profile

Google scholar

Scopus

Orcid

Early Academic Pursuits 🎓

Dr. Goff’s academic path began with a passion for physics and mathematics, which led him to Vanderbilt University for his undergraduate studies. From there, he continued his education at Indiana University, where he completed both his Master’s and Ph.D. His dissertation work focused on the photon-drag effect in simple metals, a topic that would shape much of his future research endeavors. His early academic experiences, including roles as an Associate Instructor and a Physics Instructor, honed his teaching abilities and deepened his understanding of the complexities of condensed matter physics.

Professional Endeavors 🌍

Dr. Goff has held notable academic positions at institutions such as Lynchburg College (now University of Lynchburg), where he served as Chair of the Department of Physics and Professor of Physics. His roles also include a Visiting Professorship at the University of Sheffield (UK), allowing him to engage with an international community of scientists and engineers. His research endeavors have spanned several interdisciplinary fields, including sports physics, fluid dynamics, and computational simulations of physical systems. His experience teaching and researching in these diverse areas has made him a prominent figure in the academic and sports engineering communities.

Contributions and Research Focus 🔬

Dr. Goff is best known for his work in the physics of sports, where he investigates the aerodynamics of soccer balls, the physics of cycling, and the design of sports equipment like climbing helmets. His research has led to numerous articles in prestigious journals, including studies on soccer ball aerodynamics and Tour de France modeling. Dr. Goff’s research has practical applications in both engineering and sports performance, and he continues to explore new avenues in fluid dynamics, sports engineering, and numerical simulations. He is also dedicated to mentoring students, helping them bridge the gap between theory and practical application in physics.

Impact and Influence 🌟

Dr. Goff’s work has had a profound impact on both the academic community and the sports industry. His research on soccer ball flight trajectories, cycling performance modeling, and sports equipment design has influenced the way engineers design and test sports equipment. His contributions to sports engineering education and his advocacy for using numerical modeling in the classroom have reshaped how students approach problem-solving in physics. Through his research articles, teaching, and collaborations, Dr. Goff has established himself as a key figure in the application of physics to real-world sports challenges.

Academic Cites 📚

Dr. Goff’s work is widely cited in the academic community, with contributions to journals such as the American Journal of Physics, Journal of Sports Engineering and Technology, and European Journal of Physics. His publications on soccer ball aerodynamics, Tour de France modeling, and sports engineering are often referenced by researchers in the field. His citation record attests to his influence in applied physics, particularly in the study of fluid dynamics and sports biomechanics.

Research Skills 🔧

Dr. Goff possesses a broad set of research skills that include expertise in numerical simulations, fluid dynamics modeling, and computational physics. He is fluent in programming languages such as FORTRAN and Mathematica, as well as Linux systems, making him well-equipped to tackle complex physical simulations. His ability to collaborate across disciplines, combining theoretical insights with practical engineering solutions, has resulted in innovative studies that bridge the gap between physics and sports technology.

Teaching Experience 📖

With over two decades of teaching experience, Dr. Goff has taught a wide variety of courses at both the undergraduate and graduate levels. His courses span topics from classical mechanics and electromagnetic theory to quantum mechanics and computational physics. He has also developed general education courses like Physics of Sports, helping non-science majors engage with physics in a way that connects to their everyday lives. Dr. Goff is known for his student-centered teaching style, using interactive techniques and real-world examples to foster a deep understanding of complex concepts.

Awards and Honors 🏆

Dr. Goff’s contributions to teaching, research, and student mentoring have been recognized with numerous awards, including the James A. Huston Award for Excellence in Scholarship and the Faculty Award for Excellence in Research Mentoring at the University of Lynchburg. He has also been honored with the Sigma Nu Herbert Bruce Award for being an outstanding faculty member, and multiple Frank R. Haig Prizes for best papers from four-year colleges at the American Association of Physics Teachers meetings. These accolades reflect Dr. Goff’s excellence in both academic scholarship and mentorship.

Legacy and Future Contributions 🔮

Dr. Goff’s legacy lies in his innovative teaching methods and his impactful research at the intersection of physics and sports engineering. His continued research will likely focus on improving sports performance modeling and engineering design. Through his research projects with students, his mentorship will shape the next generation of physicists, engineers, and sports scientists. Dr. Goff’s future contributions will undoubtedly advance our understanding of fluid dynamics and its applications to sports technologies, influencing both academic and practical fields for years to come.

  Publications Top Notes

The Aerodynamics of New Design Soccer Balls Using a Three-Dimensional Printer

  • Authors: Sungchan Hong, John Eric Goff, Takeshi Asai
    Journal: Applied Sciences
    Year: 2024

Aerodynamic comparisons between Al Rihla and recent World Cup soccer balls

  • Authors: John Eric Goff, Sungchan Hong, Takeshi Asai
    Journal: Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology
    Year: 2022

Multiple approaches to incorporating scattering states in non-degenerate perturbation theory

  • Authors: John Goff
    Journal: American Journal of Physics
    Year: 2020

Influence of Surface Properties on Soccer Ball Trajectories

  • Authors: John Goff
    Journal: Proceedings
    Year: 2020

Measurements of the Flight Trajectory of a Spinning Soccer Ball and the Magnus Force Acting on It

  • Authors: John Goff
    Journal: Proceedings
    Year: 2020

 

Hosameldeen Elshekh | Experimental methods | Best Researcher Award

Dr. Hosameldeen Elshekh | Experimental methods | Best Researcher Award

Dr. Hosameldeen Elshekh | Southwest jiaotong University | China

👨‍🎓 Profile

🎓 Early Academic Pursuits

Dr. Hosameldeen Elhadi Abdelrhman Elshekh began his academic journey with a B.Ed. (Honors) in Physics and Mathematics from the University of Gezira, Sudan, in 2009. His exceptional performance and passion for physics and materials science paved the way for his higher education. He earned an M.Sc. in Physics from the same institution in 2016, followed by an M.Sc. Qualifying in Physics from the University of Khartoum in 2013. Currently, he is pursuing a Ph.D. in Physics at Southwest Jiaotong University, China, where he has been conducting advanced research since 2018.

🏫 Professional Endeavors

Dr. Hosameldeen’s professional journey commenced as a University Teaching Assistant at the University of Gezira, Sudan (2011–2014). He later progressed to a Physics Lecturer role (2016–2018), where he developed undergraduate physics courses and mentored students. His focus on curriculum innovation and science outreach programs highlights his dedication to fostering education and promoting science in the community.

🔬 Contributions and Research Focus

With expertise in material science, nanomaterials, and memristive devices, Hosameldeen specializes in thin films and their electrical and magnetic properties. His research integrates theoretical and experimental physics, focusing on memristors, resistive switching memory, and nanostructured materials. His work includes advanced synthesis techniques like electrochemical oxidation and magnetron sputtering, along with material characterization using SEM, EDS, and XRD.

🌍 Impact and Influence

Dr. Hosameldeen has co-authored nine SCI-indexed publications, contributing to advancements in resistive switching memory and bioelectronic devices. His collaborative research with peers worldwide reflects his commitment to fostering interdisciplinary partnerships. His work on TiOx-based memristors and MoSe2 nanosphere arrays demonstrates the potential of his innovations in sustainable technologies and electronics.

📚 Academic Citations

Dr. Hosameldeen’s contributions are recognized globally, with his publications indexed in Web of Science, Google Scholar, and ResearchGate. His research on WOx/TiOy heterojunctions and Zn-Al nanosheets-based memristors has been widely cited, underscoring his influence in the field of materials physics.

🛠️ Technical Skills

Hosameldeen excels in synthesis and characterization of nanomaterials, with hands-on expertise in tools like SEM, EDS, XRD, and advanced techniques like electrochemical oxidation. His skills in developing and testing memristive devices and thin-film materials are complemented by his ability to design and implement laboratory modules for educational purposes.

👨‍🏫 Teaching Experience

With over eight years of teaching experience, Hosameldeen has demonstrated excellence in curriculum development, student mentoring, and laboratory instruction. At the University of Gezira, he played a pivotal role in modernizing the physics curriculum and conducting research workshops. His dedication to science outreach programs showcases his passion for empowering students and local communities through education.

🌟 Legacy and Future Contributions

Dr. Hosameldeen’s research is shaping the future of nanotechnology and electronic devices, offering innovative solutions to scientific challenges. His commitment to advancing materials science and mentoring the next generation of scientists cements his legacy as an influential educator and researcher. Looking ahead, he aims to expand his contributions to global scientific collaboration and continue his exploration of sustainable material technologies.

Top Noted Publications

Nonvolatile behavior of resistive switching memory in Ag/WOx/TiOy/ITO device based on WOx/TiOy heterojunction
  • Authors: Hosameldeen Elshekh, Hongyan Wang, Chuan Yang, Shouhui Zhu
    Journal: Journal of Applied Physics
    Year: 2024
Nonvolatile resistive switching memory behavior of the TiOx-based memristor
  • Authors: Hosameldeen Elshekh, Hongyan Wang, Shouhui Zhu, Chuan Yang, Jiangqiu Wang
    Journal: Chemical Physics
    Year: 2024
An excellent resistive switching memory behaviour based on assembled MoSe2 nanosphere arrays
  • Authors: Mao Shuangsuo, Hosameldeen Elshekh, Mayameen S. Kadhim, Yudong Xia, Guoqiang Fu, Wentao Hou, Yong Zhao, Bai Sun
    Journal: Journal of Solid State Chemistry
    Year: 2019
Effect of crystalline state on conductive filaments forming process in resistive switching memory devices
  • Authors: Guo Tao, Hosameldeen Elshekh, Zhou Yu, Bo Yu, Dan Wang, Mayameen S. Kadhim, Yuanzheng Chen, Wentao Hou, Bai Sun
    Journal: Materials Today Communications
    Year: 2019
The pH-controlled memristive effect in a sustainable bioelectronic device prepared using lotus root
  • Authors: Li T, Y. Xu, M. Lei, Y. Zhao, B. Sun, Hosameldeen Elshekh, L. Zheng, X. Zhang, W. Hou
    Journal: Materials Today Sustainability
    Year: 2020

 

 

Ali Ajami | Experimental methods | Best Researcher Award

Prof. Ali Ajami | Experimental methods | Best Researcher Award

Prof. Elec. Eng. at Azarbaijan Shahid Madani University (ASMU) , Iran

Ali Ajami is a prominent Iranian electrical engineer born on August 23, 1973. He is a Professor at the Department of Electrical Engineering at Azerbaijan Shahid Madani University. Dr. Ajami has made significant contributions to the field of electrical engineering, particularly in power electronics and renewable energy applications. With a career spanning over two decades, he has combined teaching, administration, and research to enhance the educational landscape at his university. His leadership roles, including Vice President for Research and Technology, showcase his commitment to advancing research initiatives. Dr. Ajami’s extensive academic and administrative experience makes him a respected figure in his field.

 🎓Profile:

Education:

Dr. Ajami obtained his Ph.D. in Electrical Engineering from Tabriz University in 2005, following his M.Sc. in 1999 and B.Sc. in 1996, also from the same institution. His solid educational foundation has equipped him with the knowledge and skills necessary for his professional journey. His studies focused on various aspects of electrical and electronic engineering, allowing him to develop a deep understanding of the field. His academic background is complemented by years of practical experience, positioning him as an expert in power electronics and related areas. Dr. Ajami’s educational achievements are a testament to his dedication and expertise in electrical engineering.

Professional Experience:

Dr. Ajami’s professional journey began as an Assistant Professor at Azerbaijan Shahid Madani University in 2006, where he progressed to Associate Professor in 2011 and Professor in 2016. He has held several significant administrative roles, including Vice President for Research and Technology from 2014 to 2022 and Director of Research Affairs. His teaching portfolio includes a wide range of undergraduate and graduate courses, emphasizing industrial electronics, power quality, and modern control systems. Additionally, he has supervised numerous Ph.D. and Master’s theses, shaping the next generation of engineers. Dr. Ajami’s extensive experience in academia highlights his commitment to education and research excellence.

Research Focus:

Dr. Ajami’s research interests are centered on the design and control of power electronic converters, with applications in renewable energy, electric vehicles, and energy storage systems. He is particularly focused on the dynamic and steady-state modeling of FACTS devices such as STATCOM and UPFC, as well as on harmonics and power quality compensation systems. His expertise extends to the use of microprocessors and digital signal processors in control systems for power electronics. Dr. Ajami’s work aims to enhance the efficiency and reliability of electrical systems, making significant contributions to the advancement of sustainable energy technologies.

Awards and Honors:

Dr. Ajami has received multiple Researcher Awards from Azerbaijan University of Tarbiat Moallem and Azerbaijan Shahid Madani University, recognizing his exceptional contributions to research from 2006 to 2015. Notably, he was awarded the Industrial Researcher Award and ranked among the top 2% of highly cited researchers worldwide from 2020 to present. His accolades reflect his dedication to advancing knowledge and innovation in electrical engineering. These honors not only acknowledge his individual achievements but also enhance the reputation of his affiliated institutions. Dr. Ajami’s awards illustrate his impact on the academic and industrial sectors.

 📚Publication Top Notes:

Title: Theoretical and experimental evaluation of SEPIC-based DC–DC converters with two-winding and three-winding coupled inductors
  • Authors: Mahmoudi, M., Ajami, A., Babaei, E., Soleimanifard, J.
    Publication Year: 2022
    Citations: 5
Title: A non‐isolated high step‐up DC‐DC converter with integrated 3 winding coupled inductor and reduced switch voltage stress
  • Authors: M. Mahmoudi, A. Ajami, E. Babaei
    Publication Year: 2018
    Citations: 37
Title: Minimisations of total harmonic distortion in cascaded transformers multilevel inverter by modifying turn ratios of the transformers and input voltage regulation
  • Authors: A. Ajami, A. Farakhor, H. Ardi
    Publication Year: 2014
    Citations: 37
Title: Transformer‐based multilevel inverters: analysis, design and implementation
  • Authors: S. Salehahari, E. Babaei, SH. Hosseini, A. Ajami
    Publication Year: 2019
    Citations: 32
Title: A single switch high step‐up DC‐DC converter with three winding coupled inductor
  • Authors: M. Mahmoudi, A. Ajami, E. Babaei
    Publication Year: 2019
    Citations: 32
Title: Design and control of a grid tied 6-switch converter for two independent low power wind energy resources based on PMSGs with MPPT capability
  • Authors: A. Ajami, R. Alizadeh, M. Elmi
    Publication Year: 2016
    Citations: 32