Marcilei Aparecida Guazzelli | Experimental methods | Women Researcher Award

Prof. Dr. Marcilei Aparecida Guazzelli | Experimental methods | Women Researcher Award

Professor at Centro Universitário FEI | Brazil

Prof. Marcilei Aparecida Guazzelli is a Brazilian physicist and full professor at Centro Universitário FEI, renowned for her research in radiation physics, nuclear structure, and semiconductor devices. With a strong background in experimental nuclear physics and ionizing radiation effects, she has made impactful contributions to both academic science and applied engineering. Her research spans international collaborations, high-impact publications, and scientific leadership. As the head of multiple laboratories and coordinator of national and international projects, she has positioned herself as a leader in radiation tolerance studies and nuclear materials.

👨‍🎓Profile

Google scholar

Scopus

ORCID

📘 Early Academic Pursuits

Prof. Guazzelli’s academic journey began at the Institute of Physics, USP, where she earned her undergraduate degree (1990–1994). She pursued a Master’s degree (1996–1999) focused on the atomic force microscopy of diamond films, and later completed her PhD (2002–2004) with work on the nuclear structure of ⁵⁸Co, an odd-odd nucleus. Her early exposure to experimental physics and critical thinking laid the foundation for her lifelong commitment to the study of ionizing radiation effects, semiconductors, and nuclear materials. Her rigorous academic training shaped her ability to merge fundamental science with technological application.

🧑‍🏫 Professional Endeavors

Prof. Guazzelli has held various academic ranks at Centro Universitário FEI, culminating in her promotion to Full Professor in 2017. Previously, she served at Universidade Metodista de São Paulo and played pivotal roles in research infrastructure, heading both LERI and LAFIR laboratories. Her professional contributions include coordinating major national projects such as INCT_Nuclear Physics and CITAR, and serving on several scientific committees and councils. She actively contributes to policy-making, event organization, and interdisciplinary research, often collaborating with institutions like INFN (Italy), USP, and ITA, while maintaining an active teaching role.

🔬 Contributions and Research Focus

Prof. Guazzelli’s research focuses on the effects of ionizing radiation on materials and semiconductor devices, a field critical to aerospace, nuclear safety, and microelectronics. Her work investigates total ionizing dose, single-event effects, and neutron interactions in materials like GaN HEMTs, SiC, and highly oriented pyrolytic graphite (HOPG). She also collaborates in the NUMEN project, aiming to understand neutrinoless double beta decay through nuclear matrix elements. With 184 peer-reviewed publications, her findings support both scientific understanding and technological innovation, particularly in developing radiation-hardened devices for extreme environments.

🌍 Impact and Influence 

Prof. Guazzelli has established a global impact through her collaborations with European institutions, such as INFN, CNA, and the Polytechnic University of Turin, as well as national partners including FAPESP, CNPq, and USP. Her research findings are widely cited and contribute to international advancements in nuclear physics and electronics. As editor, speaker, and scientific coordinator, she has influenced policies, research priorities, and educational standards. Her participation in projects with CERN, CUBESATS, and LHC demonstrates her integral role in the future of high-energy and applied physics.

📚 Academic Citations

Prof. Guazzelli boasts an H-index of 19, with 1,497 citations listed on Google Scholar—a testament to the influence and relevance of her scholarly output. With over 184 articles in peer-reviewed journals, 7 book chapters, and numerous conference proceedings, her academic presence is substantial. These works are referenced by scholars across nuclear physics, materials science, and radiation effects, indicating her interdisciplinary reach. Her most cited research includes studies on diamond films, GaN HEMTs, neutron interactions, and beta decay. She maintains active profiles on ORCID, ResearchGate, and Publons, making her work accessible and transparent.

🛠️ Research Skills

Prof. Guazzelli demonstrates expertise in nuclear instrumentation, radiation detection, materials testing under irradiation, and semiconductor failure analysis. She is highly proficient in coordinating complex, multi-institutional experimental campaigns, especially at international particle accelerator labs (INFN, GANIL, ALTO). Her skills extend to data analysis, microscopy, Monte Carlo simulations, and collaborative publication writing. She effectively integrates experimental results into both academic discourse and industry-relevant solutions, showcasing her versatility. Her leadership of multi-year grant-funded projects attests to her ability to manage research teams, secure funding, and contribute meaningful advances in applied nuclear physics and radiation engineering.

👩‍🏫 Teaching Experience 

A dedicated educator, Prof. Guazzelli has served as course coordinator for Physics and Modern Physics at Centro Universitário FEI for over a decade. She teaches at the undergraduate and graduate levels, notably in nano-microelectronics and radiation physics, mentoring students in both academic theory and experimental practice. She has supervised numerous master’s and doctoral theses, guided scientific initiation students, and contributed to curriculum development in Engineering and Applied Physics. Her teaching philosophy emphasizes real-world applications, interdisciplinary knowledge, and inclusive education, and she frequently promotes science communication, especially for young women in STEM.

🏆 Awards and Honors 

Prof. Guazzelli has received multiple awards recognizing her commitment to education, research, and gender equality in science. Notably, her students have won Best Presentation at SICFEI (2019, 2020, 2021) and Best Poster at SERESSA (2019, 2020). She has served as Communications Director of the Brazilian Physical Society and as chair/editor of key scientific events such as RTFNB. Her invited talks and public science appearances on TV SEN, Rede Globo, and Canaltech underscore her role in public outreach. Her involvement in events like “Women in Science” showcases her advocacy for inclusion and visibility of women researchers.

🔮 Legacy and Future Contributions

Prof. Guazzelli’s legacy lies in her dedication to scientific excellence, education, and gender equity in physics. She continues to push boundaries in radiation physics, training the next generation of scientists and engineers. Her role in international collaborations like NUMEN, SAFIIRA, and CERN-related projects ensures her influence will persist in shaping nuclear science policy and application. Through ongoing mentorship, leadership in interdisciplinary projects, and contributions to STEM outreach, she exemplifies the transformative potential of science. Her future work will likely focus on next-generation materials, sustainable nuclear technologies, and cross-border knowledge exchange.

Top Noted Publications

📄Effects of neutron radiation on the thermal conductivity of highly oriented pyrolytic graphite
  • Authors: Guazzelli, M. A.; Avanzi, L. H.; Aguiar, V. A. P.; Vilas-Boas, A. C.; Alberton, S. G.; Masunaga, S. H.; Chinaglia, E. F.; Araki, K.; Nakamura, M.; Toyama, M. M. et al.
    Journal: Diamond and Related Materials
    Year: 2025
📄 Single-Event Effects Induced by Monoenergetic Fast Neutrons in Silicon Power UMOSFETs
  • Authors: Saulo G. Alberton; Alexis C. Vilas-Bôas; Marcilei A. Guazzelli; Vitor A. P. Aguiar; Matheus S. Pereira; Nemitala Added; Claudio A. Federico; Tássio C. Cavalcante; Evaldo C. F. Pereira Júnior; Rafael G. Vaz et al.
    Journal: IEEE Transactions on Device and Materials Reliability
    Year: 2025
📄Ion-Induced Charge and Single-Event Burnout in Silicon Power UMOSFETs
  • Authors: Saulo G. Alberton; Vitor A. P. Aguiar; Nemitala Added; Alexis C. Vilas-Bôas; Marcilei A. Guazzelli; Jeffery Wyss; Luca Silvestrin; Serena Mattiazzo; Matheus S. Pereira; Saulo Finco et al.
    Journal: Electronics
    Year: 2025
📄 Evaluation of Funnel Models on Calculation of Ion-Induced Collected Charge
  • Authors: Vitor A. P. Aguiar; Nilberto H. Medina; Nemitala Added; Saulo G. Alberton; Eduardo L. A. Macchione; Marcilei A. Guazzelli; Marco A. A. Melo; Juliano A. Oliveira; Renato C. Giacomini; Fernando R. Aguirre et al.
    Journal: IEEE Transactions on Electron Devices
    Year: 2025
📄 Channel morphology as a key factor to hydrological and sedimentological patterns in the largest fluvial ria lake of Amazonia
  • Authors: João Paulo S. de Cortes; Marcilei A. Guazzelli; Jessica F. Curado; Eliane F. Chinaglia; Wagner Sciani; Fabiano N. Pupim; George Luiz Luvizotto
    Journal: Journal of South American Earth Sciences
    Year: 2023

 

 

Tupan Das | Experimental methods | Best Researcher Award

Mr. Tupan Das | Experimental methods | Best Researcher Award

Mr. Tupan Das is a Research Scholar and Senior Research Fellow (CSIR SRF) currently pursuing his Ph.D. in Physics at the Indian Institute of Technology (IIT) Patna. His research centers around flexible, multifunctional nanogenerator devices, with applications in self-powered sensors and sustainable energy systems. With a solid academic foundation, a trail of high-impact publications, and a growing patent portfolio, he is quickly establishing himself as a promising early-career scientist in nanotechnology and materials science.

👨‍🎓Profile

Google scholar

Scopus

📚 Early Academic Pursuits

Mr. Das laid his academic foundation at Jawahar Navodaya Vidyalayas, where he consistently performed at the top percentile. He completed his B.Sc. in Physics from Govt. Degree College Dharmanagar under Tripura University, followed by a Master’s in Physics from NIT Agartala with distinction (79%). His consistent academic success led him to IIT Patna, where he is pursuing a Ph.D. with a stellar 88.6% score, focusing on flexible polymer nanocomposites for energy harvesting.

🧪 Professional Endeavors

Throughout his doctoral journey, Mr. Das has been a recipient of the prestigious CSIR Junior and Senior Research Fellowships, awarded by the Council of Scientific & Industrial Research (CSIR), Government of India. His research spans piezoelectric, triboelectric, and hybrid nanogenerators, ferroelectric materials, and energy storage devices, with a hands-on approach in both experimental fabrication and device testing.

🔬 Research Focus and Contributions

His Ph.D. thesis titled “Flexible and Multifunctional Polymer Nanocomposite-based Nanogenerator Devices for the Self-powered Sensor Applications” reflects his cutting-edge work in energy harvesting and sensing technologies. With over 15 high-impact peer-reviewed publications, including in Nano Energy (IF: 16.8) and Chemical Engineering Journal (IF: 13.4), he has pioneered multifunctional nanogenerators that power devices without external batteries  a leap toward self-sustainable electronics. His interdisciplinary approach, combining magnetic, dielectric, and piezoelectric properties, has also led to research on self-charging supercapacitors, memristors, and optoelectronic devices, along with a submitted patent on radiation therapy films.

🌍 Impact and Influence

Mr. Das’s work has made a visible mark on the field of applied physics and materials engineering, particularly in the domains of wearable electronics, biomedical sensors, and sustainable energy. His research not only demonstrates academic rigor but also emphasizes real-world applications  evident through presentations at international conferences like ICONN, MRSI, and AC2MP, where he has received accolades including Best Oral Presentation and 1st Position in Research Communication.

📈 Academic Citations and Visibility

With publications in high-impact journals and ongoing collaborations with senior researchers, Mr. Das’s work is gaining increasing attention in the academic community. Journals such as Nano Energy, Applied Physics Letters, and Chemical Engineering Journal ensure global visibility and citation potential, cementing his status as a rising contributor in nanotechnology research.

🛠️ Research and Technical Skills

Mr. Tupan Das possesses comprehensive expertise in advanced experimental techniques, making him a highly skilled experimentalist in the field of materials science and applied physics. His technical proficiency includes X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), and Transmission Electron Microscopy (TEM) for structural analysis. He is adept in fabrication techniques like Spin Coating, Electrospinning, and Hydrothermal Synthesis. Additionally, he has hands-on experience with Impedance Analysis, Ferroelectric Loop Tracing, Cyclic Voltammetry, and Planetary Ball Milling. His core strength lies in energy storage and harvesting device fabrication, especially in self-charging supercapacitors and nanogenerators, showcasing his broad technical command.

👨‍🏫 Teaching Experience

As a teaching assistant, Mr. Das has contributed to B.Tech. 1st Year Physics Labs during 2022–2023 and 2023–2024 at IIT Patna. His ability to communicate complex concepts clearly, coupled with a passion for education, makes him an effective mentor and guide to undergraduate students.

🏅 Awards and Honors

Mr. Tupan Das has received multiple prestigious accolades that underscore his scientific excellence, communication skills, and research innovation. He qualified the CSIR-UGC NET JRF with an impressive AIR 323, along with clearing GATE (2021) and IIT JAM (2018) all national-level competitive exams. He earned the Best Oral Presentation Award at AC2MP-2024, IIT Patna, and secured 1st Position in the highly competitive “My Research in 3 Minutes” contest at RSD 2024. Demonstrating innovation, he has also filed a patent on magnetic nanofiber-based radiation therapy films, further solidifying his profile as a dynamic and impactful researcher.

🌐 International Exposure

Mr. Das is selected for the NSTC-IIPP Internship Programme at Ming-Chi University of Technology, Taipei, Taiwan (2024-2025). Here, he will explore hybrid piezo-triboelectric nanogenerators for gas sensing and water harvesting  a testament to his global research impact and collaboration.

🧭 Legacy and Future Contributions

Mr. Tupan Das is positioned to become a leading researcher in next-generation energy solutions. His integrated approach to multifunctional nanomaterials aligns with future industrial and healthcare demands, especially in the IoT, wearables, and sustainable technologies domains. With plans to continue in academic research and innovation, he is expected to contribute significantly to India’s scientific and technological self-reliance.

Top Noted Publications

Flexible Piezoelectric Nanogenerator as a Self-charging Piezo-supercapacitor for Energy Harvesting and Storage Application

  • Authors: T. Das, S. Tripathy, A. Kumar, and M. Kar
    Journal: Nano Energy
    Year: 2025

The MnAl-alloy nanoparticles incorporated PVDF-based piezoelectric nanogenerator as a self-powered real-time pedometer sensor

  • Authors: T. Das, S. N. Rout, A. Dev, and M. Kar
    Journal: Applied Physics Letters
    Year: 2024

Double perovskite-based wearable ternary nanocomposite piezoelectric nanogenerator for self-charging, human health monitoring and temperature sensor

  • Authors: T. Das, M. K. Yadav, A. Dev, and M. Kar
    Journal: Chemical Engineering Journal
    Year: 2024

Multi-functional piezoelectric nanogenerator based on relaxor ferroelectric materials (BSTO) and conductive fillers (MWCNTs) for self-powered memristor and optoelectronic devices

  • Authors: T. Das, P. Biswas, A. Dev, J. Mallick, and M. Kar
    Journal: Chemical Engineering Journal
    Year: 2024

Tuning of magnetic properties of Al-doped cobalt ferrite nanofiber prepared by electrospinning technique

  • Authors: T. Das, S. Noor, Kumari, J. Mallick, A. Shukla, S. Datta, M.K. Manglam, and M. Kar
    Journal: Physica Scripta
    Year: 2023