Marcilei Aparecida Guazzelli | Experimental methods | Women Researcher Award

Prof. Dr. Marcilei Aparecida Guazzelli | Experimental methods | Women Researcher Award

Professor at Centro Universitário FEI | Brazil

Prof. Marcilei Aparecida Guazzelli is a Brazilian physicist and full professor at Centro Universitário FEI, renowned for her research in radiation physics, nuclear structure, and semiconductor devices. With a strong background in experimental nuclear physics and ionizing radiation effects, she has made impactful contributions to both academic science and applied engineering. Her research spans international collaborations, high-impact publications, and scientific leadership. As the head of multiple laboratories and coordinator of national and international projects, she has positioned herself as a leader in radiation tolerance studies and nuclear materials.

👨‍🎓Profile

Google scholar

Scopus

ORCID

📘 Early Academic Pursuits

Prof. Guazzelli’s academic journey began at the Institute of Physics, USP, where she earned her undergraduate degree (1990–1994). She pursued a Master’s degree (1996–1999) focused on the atomic force microscopy of diamond films, and later completed her PhD (2002–2004) with work on the nuclear structure of ⁵⁸Co, an odd-odd nucleus. Her early exposure to experimental physics and critical thinking laid the foundation for her lifelong commitment to the study of ionizing radiation effects, semiconductors, and nuclear materials. Her rigorous academic training shaped her ability to merge fundamental science with technological application.

🧑‍🏫 Professional Endeavors

Prof. Guazzelli has held various academic ranks at Centro Universitário FEI, culminating in her promotion to Full Professor in 2017. Previously, she served at Universidade Metodista de São Paulo and played pivotal roles in research infrastructure, heading both LERI and LAFIR laboratories. Her professional contributions include coordinating major national projects such as INCT_Nuclear Physics and CITAR, and serving on several scientific committees and councils. She actively contributes to policy-making, event organization, and interdisciplinary research, often collaborating with institutions like INFN (Italy), USP, and ITA, while maintaining an active teaching role.

🔬 Contributions and Research Focus

Prof. Guazzelli’s research focuses on the effects of ionizing radiation on materials and semiconductor devices, a field critical to aerospace, nuclear safety, and microelectronics. Her work investigates total ionizing dose, single-event effects, and neutron interactions in materials like GaN HEMTs, SiC, and highly oriented pyrolytic graphite (HOPG). She also collaborates in the NUMEN project, aiming to understand neutrinoless double beta decay through nuclear matrix elements. With 184 peer-reviewed publications, her findings support both scientific understanding and technological innovation, particularly in developing radiation-hardened devices for extreme environments.

🌍 Impact and Influence 

Prof. Guazzelli has established a global impact through her collaborations with European institutions, such as INFN, CNA, and the Polytechnic University of Turin, as well as national partners including FAPESP, CNPq, and USP. Her research findings are widely cited and contribute to international advancements in nuclear physics and electronics. As editor, speaker, and scientific coordinator, she has influenced policies, research priorities, and educational standards. Her participation in projects with CERN, CUBESATS, and LHC demonstrates her integral role in the future of high-energy and applied physics.

📚 Academic Citations

Prof. Guazzelli boasts an H-index of 19, with 1,497 citations listed on Google Scholar—a testament to the influence and relevance of her scholarly output. With over 184 articles in peer-reviewed journals, 7 book chapters, and numerous conference proceedings, her academic presence is substantial. These works are referenced by scholars across nuclear physics, materials science, and radiation effects, indicating her interdisciplinary reach. Her most cited research includes studies on diamond films, GaN HEMTs, neutron interactions, and beta decay. She maintains active profiles on ORCID, ResearchGate, and Publons, making her work accessible and transparent.

🛠️ Research Skills

Prof. Guazzelli demonstrates expertise in nuclear instrumentation, radiation detection, materials testing under irradiation, and semiconductor failure analysis. She is highly proficient in coordinating complex, multi-institutional experimental campaigns, especially at international particle accelerator labs (INFN, GANIL, ALTO). Her skills extend to data analysis, microscopy, Monte Carlo simulations, and collaborative publication writing. She effectively integrates experimental results into both academic discourse and industry-relevant solutions, showcasing her versatility. Her leadership of multi-year grant-funded projects attests to her ability to manage research teams, secure funding, and contribute meaningful advances in applied nuclear physics and radiation engineering.

👩‍🏫 Teaching Experience 

A dedicated educator, Prof. Guazzelli has served as course coordinator for Physics and Modern Physics at Centro Universitário FEI for over a decade. She teaches at the undergraduate and graduate levels, notably in nano-microelectronics and radiation physics, mentoring students in both academic theory and experimental practice. She has supervised numerous master’s and doctoral theses, guided scientific initiation students, and contributed to curriculum development in Engineering and Applied Physics. Her teaching philosophy emphasizes real-world applications, interdisciplinary knowledge, and inclusive education, and she frequently promotes science communication, especially for young women in STEM.

🏆 Awards and Honors 

Prof. Guazzelli has received multiple awards recognizing her commitment to education, research, and gender equality in science. Notably, her students have won Best Presentation at SICFEI (2019, 2020, 2021) and Best Poster at SERESSA (2019, 2020). She has served as Communications Director of the Brazilian Physical Society and as chair/editor of key scientific events such as RTFNB. Her invited talks and public science appearances on TV SEN, Rede Globo, and Canaltech underscore her role in public outreach. Her involvement in events like “Women in Science” showcases her advocacy for inclusion and visibility of women researchers.

🔮 Legacy and Future Contributions

Prof. Guazzelli’s legacy lies in her dedication to scientific excellence, education, and gender equity in physics. She continues to push boundaries in radiation physics, training the next generation of scientists and engineers. Her role in international collaborations like NUMEN, SAFIIRA, and CERN-related projects ensures her influence will persist in shaping nuclear science policy and application. Through ongoing mentorship, leadership in interdisciplinary projects, and contributions to STEM outreach, she exemplifies the transformative potential of science. Her future work will likely focus on next-generation materials, sustainable nuclear technologies, and cross-border knowledge exchange.

Top Noted Publications

📄Effects of neutron radiation on the thermal conductivity of highly oriented pyrolytic graphite
  • Authors: Guazzelli, M. A.; Avanzi, L. H.; Aguiar, V. A. P.; Vilas-Boas, A. C.; Alberton, S. G.; Masunaga, S. H.; Chinaglia, E. F.; Araki, K.; Nakamura, M.; Toyama, M. M. et al.
    Journal: Diamond and Related Materials
    Year: 2025
📄 Single-Event Effects Induced by Monoenergetic Fast Neutrons in Silicon Power UMOSFETs
  • Authors: Saulo G. Alberton; Alexis C. Vilas-Bôas; Marcilei A. Guazzelli; Vitor A. P. Aguiar; Matheus S. Pereira; Nemitala Added; Claudio A. Federico; Tássio C. Cavalcante; Evaldo C. F. Pereira Júnior; Rafael G. Vaz et al.
    Journal: IEEE Transactions on Device and Materials Reliability
    Year: 2025
📄Ion-Induced Charge and Single-Event Burnout in Silicon Power UMOSFETs
  • Authors: Saulo G. Alberton; Vitor A. P. Aguiar; Nemitala Added; Alexis C. Vilas-Bôas; Marcilei A. Guazzelli; Jeffery Wyss; Luca Silvestrin; Serena Mattiazzo; Matheus S. Pereira; Saulo Finco et al.
    Journal: Electronics
    Year: 2025
📄 Evaluation of Funnel Models on Calculation of Ion-Induced Collected Charge
  • Authors: Vitor A. P. Aguiar; Nilberto H. Medina; Nemitala Added; Saulo G. Alberton; Eduardo L. A. Macchione; Marcilei A. Guazzelli; Marco A. A. Melo; Juliano A. Oliveira; Renato C. Giacomini; Fernando R. Aguirre et al.
    Journal: IEEE Transactions on Electron Devices
    Year: 2025
📄 Channel morphology as a key factor to hydrological and sedimentological patterns in the largest fluvial ria lake of Amazonia
  • Authors: João Paulo S. de Cortes; Marcilei A. Guazzelli; Jessica F. Curado; Eliane F. Chinaglia; Wagner Sciani; Fabiano N. Pupim; George Luiz Luvizotto
    Journal: Journal of South American Earth Sciences
    Year: 2023

 

 

Yuhui Wang | Experimental methods | Best Researcher Award

Prof. Yuhui Wang | Experimental methods | Best Researcher Award

Yanshan University | China

Professor Yuhui Wang is a distinguished academic and researcher in the field of Materials Science and Mechanical Engineering, currently serving as a Professor at the School of Mechanical Engineering, Yanshan University (YSU), China. With over two decades of research and academic experience, Professor Wang has made significant strides in understanding and innovating material microstructures for advanced industrial applications.

👨‍🎓Profile

Scopus

ORCID

🎓 Early Academic Pursuits

Professor Wang embarked on his academic journey at Yanshan University, where he earned his Bachelor of Engineering in 2003, followed by a Master’s degree in 2006, and culminated in a PhD in 2012, all in Materials Science and Engineering. His solid academic foundation laid the groundwork for his lifelong pursuit of excellence in metallurgical research and materials design.

🧑‍🔬 Professional Endeavors

Professor Yuhui Wang has demonstrated a consistent trajectory of professional growth through pivotal roles in both academic and research domains. Currently a Professor (2020–Present) at the School of Mechanical Engineering, YSU, he previously served as a Senior Researcher (2012–2019) at the National Engineering Research Center for Equipment and Technology of C.S.R., YSU, and as a Research Associate (2006–2010) at the School of Materials Science and Engineering, YSU. These positions have established him as a leader in academic research, fostering industry collaboration and integrating theoretical innovation with practical engineering applications.

🔬 Contributions and Research Focus

Professor Wang’s research is centered on the microstructure-processing-property relationships in metallic materials, aiming to design advanced materials through microstructural engineering. Since 2021, he has led pioneering work in a novel deformation method titled “Dynamic Offsets and Shear Force Adjustment Rolling (DS Rolling)”. This technique has shown promising results in grain refinement and texture homogenization in pure metals like copper (Cu) and tantalum (Ta). He employs state-of-the-art experimental techniques such as electron microscopy and X-ray diffraction, underscoring his technical expertise and commitment to methodological rigor.

🌍 Impact and Influence

With 110 published papers, including 1 Hot Paper and 2 Highly Cited Papers, Professor Wang has made an undeniable impact on the field. His work has garnered 1,860 citations, reflecting strong academic reception and influence. His H-index of 21 confirms both the quality and consistency of his research contributions over time. Moreover, he holds 40 authorized patents, including 1 U.S. patent, a testament to the practical relevance and innovation of his work in both academic and industrial settings.

📚 Academic Cites

His research outputs have appeared in top-tier journals, with frequent citations reflecting his status as a reliable source of scientific knowledge. The presence of Highly Cited Papers signifies that his work is used as a foundation for ongoing research, showcasing his role in advancing scientific frontiers.

🛠️ Research Skills

Professor Wang is recognized for his exceptional skills in experimental design, data analysis, and advanced characterization techniques. His ability to translate microstructural insights into functional engineering solutions marks him as a leading innovator in material processing. His recent focus on DS Rolling exemplifies a forward-looking research mindset, integrating novel mechanical deformation methods with practical application potential.

👨‍🏫 Teaching Experience

Professor Wang has an extensive teaching and supervision portfolio. He is currently supervising 5 PhD students, 1 postdoctoral fellow, and 9 master’s students, while having mentored 2 PhD and 10 master’s graduates in the past. His role as a mentor and educator is deeply valued, and he consistently inspires young scholars to engage with cutting-edge materials research.

🌟 Legacy and Future Contributions

Professor Yuhui Wang’s legacy is built on a foundation of scientific excellence, innovation, and mentorship. His visionary research in material processing techniques like DS Rolling, combined with his strong academic influence, ensures that he will continue to shape the next generation of materials science. His ongoing work promises advancements in sustainable materials development, industrial processing techniques, and deeper insights into the structure-property-performance nexus in metals.

Top Noted Publications

Pure copper plate achieving high synergetic strength and electrical conductivity via a novel dynamic offsets and shear force adjustment cryorolling

  • Authors: Longfei Xu, Renhao Wu, Haiming Zhang, Xin Xue, Yan Peng, Yuhui Wang, Hyoung Seop Kim
    Journal: Materials Science and Engineering: A
    Year: 2025

The improvement and verification of fluid dynamics simulation on temperature uniformity during heat treatment of ring pieces

  • Authors: Mingzhe Xu, Jinfu Zhao, Li Wang, Tengxiang Zhao, Ling Kong, Zhipeng Li, Zhixin Huang, Yuhui Wang
    Journal: Heliyon
    Year: 2024

Microstructure and mechanical properties of pure copper plate processed by novel dynamic offsets and shear force adjustment rolling

  • Authors: Longfei Xu, Kai Yu, Li Wang, Shizhao Quan, Ling Kong, Haokun Yang, Xiaodan Zhang, Yan Peng, Yuhui Wang
    Journal: Journal of Materials Research and Technology
    Year: 2024

Cryogenic toughness in a low-cost austenitic steel

  • Authors: Y. Wang, Y. Zhang, A. Godfrey, J. Kang, Y. Peng, T. Wang, N. Hansen, X. Huang
    Journal: Communications Materials
    Year: 2021

Hot-Deformation Behavior and Processing Maps of a Low-Carbon Fe-2 wt% Nb Steel

  • Authors: Wentao Luo, Pengzhan Cai, Ziyong Hou, Yuhui Wang, Ling Zhang, G.L. Wu
    Journal: Metals
    Year: 2021

Achieving high ductility in the 1.7 GPa grade CoCrFeMnNi high-entropy alloy at 77 K

  • Authors: S.J. Sun, Y.Z. Tian, H.R. Lin, H.J. Yang, X.G. Dong, Y.H. Wang, Z.F. Zhang
    Journal: Materials Science and Engineering: A
    Year: 2019