Peifang Li | Computational Particle Physics | Best Researcher Award

Prof. Peifang Li | Computational Particle Physics | Best Researcher Award

Inner Mongolia Minzu University | China

Peifang Li is a prominent Professor at Inner Mongolia Minzu University, where she serves as the Dean of the College of Physics and Electronic Information. As a member of the Extreme Conditions Physics Research Team, her contributions to the field of Physics have made her a key figure in both research and education. Li was born in Tongliao City, Inner Mongolia, and completed her doctorate in Condensed Matter Physics from Jilin University in 2011. She has been affiliated with Inner Mongolia University for Nationalities since 2006, gaining recognition as a first-level discipline leader in Physics.

👨‍🎓 Profile

Scopus

Early Academic Pursuits 📚

Prof. Peifang Li’s academic journey began with her interest in Physics, particularly in the study of materials under extreme conditions. After completing her undergraduate education, she pursued advanced studies at Jilin University, where she earned her Ph.D. in Condensed Matter Physics. This period of intense academic engagement allowed her to explore the theoretical and experimental dimensions of material properties under high pressure, which would later become her primary area of research focus.

Professional Endeavors 💼

In her professional career, Peifang Li has been instrumental in the development of the College of Physics and Electronic Information at Inner Mongolia Minzu University. As Dean, she has managed academic programs and contributed to the strategic direction of the department. Beyond administrative roles, Li is also deeply involved in high-level research, particularly in the fields of high-pressure physics and material science. She leads multiple research projects funded by national and regional bodies, such as the National Natural Science Foundation of China and local autonomous region projects.

Contributions and Research Focus 🔬

Prof. Li’s research focus revolves around the structure and properties of materials under extreme conditions, where she has published more than 60 papers, including 16 SCI-indexed papers. Her work explores the crystal structure, electronic properties, and phase transitions of materials under high pressure. Additionally, she has completed a monograph and secured two national utility model patents. Her contribution to the field has significantly enhanced the understanding of material behaviors in extreme environments, with profound implications for both theoretical research and practical applications.

Impact and Influence 🌍

Prof. Peifang Li’s work has had a substantial impact on the field of material science. Her research has not only advanced the scientific community’s understanding of material behavior under high-pressure conditions but also contributed to innovations in practical applications. With an H-index of 68.1 and over 700,000 yuan in funding, her academic influence is vast. Through her leadership in the Extreme Conditions Physics Research Team, Li has made significant strides in the study of materials science, helping shape the future of high-pressure research.

Academic Cites 📊

Prof. Li has an impressive citation index of 59 across major platforms like Scopus, Web of Science, and PubMed, showcasing the global recognition of her scholarly contributions. Her research has gained traction internationally, with many scholars referencing her work in the field of high-pressure physics and condensed matter physics.

Research Skills 🧠

Prof. Peifang Li is a highly skilled researcher in areas such as density functional theory, high-pressure experiments, and material characterization. Her research involves both theoretical simulations and experimental validations, making her a versatile scholar. Her ability to bridge the gap between theory and practice is one of her greatest strengths, and she continually employs innovative methods to explore new material phases and properties under extreme conditions.

Teaching Experience 🏫

In addition to her research endeavors, Peifang Li has played a pivotal role in shaping the next generation of physicists. As a master’s supervisor, she has mentored 3 young teachers and 6 postgraduate students. Her teaching philosophy emphasizes the importance of both fundamental knowledge and hands-on research experience, ensuring that her students are well-prepared for careers in academia, industry, and research.

Awards and Honors 🏅

Prof. Peifang Li’s contributions have been recognized through numerous awards and honors. Notably, she was selected for the New Century 321 Talent Project of Inner Mongolia in both 2019 and 2021. She has also received the prestigious Horqin Scholar title twice (in 2014 and 2019) and led a team to win 1 national first-class course. Her achievements are a testament to her dedication to both academic excellence and research leadership.

Legacy and Future Contributions 🌟

Prof. Peifang Li’s legacy lies in her profound impact on the study of materials under extreme conditions, which has broad implications for technology and innovation. Looking forward, she plans to continue advancing research in high-pressure physics, with a particular focus on new material discoveries. Li also aims to strengthen international collaborations and extend her research’s industrial applications, ensuring that her work contributes not only to academia but also to global technological advancements.

  Publications Top Notes

Modulated electronic properties of borophene nanoribbons using copper and oxygen atoms

Authors: Wang, W., Ma, J., Wang, Y., Zhou, K., Li, P.
Journal: Chemical Physics
Year: 2025

The crystal structure and characteristics of chlorine trifluoride under high-pressure

Authors: Xing, S., Wang, X., Wang, T., Sun, Y., Li, P.
Journal: Chemical Physics Letters
Year: 2024

The impact of halogens on the structural, electronic, and optical properties of vacancy-ordered double perovskites Rb2SeX6 (X=I, Br, Cl)

Authors: Zhang, H., Ou, T., Jiang, W., Li, P., Ma, X.
Journal: Journal of Solid State Chemistry
Year: 2024

Bose-Einstein distribution temperature features of quasiparticles around magnetopolaron in Gaussian quantum wells of alkali halogen ions

Authors: Zhang, X., Sarengaowa, Han, S., Li, P.-F., Sun, Y.
Journal: Chinese Physics B
Year: 2024

Crystal structure and electronic properties of BrF under high-pressure

Authors: Lang, H., Shao, X., Wang, X., Sun, Y., Li, P.
Journal: Chinese Journal of Physics
Year: 2024

 

 

Hamid Shahivandi | Computational Methods | Editorial Board Member

Dr. Hamid Shahivandi | Computational Methods | Editorial Board Member

Shahed University | Iran

Hamid Shahivandi, Ph.D., is a passionate physicist specializing in computational materials science with a focus on perovskite solar cells. Based in Tehran, Iran, he has over a decade of academic experience as a researcher, lecturer, and laboratory supervisor. His innovative research combines precision and creativity, positioning him as a dedicated contributor to the fields of condensed matter physics and semiconductor technology.

Profile

Scopus

Orcid

🎓 Early Academic Pursuits

Dr. Shahivandi embarked on his academic journey with a Bachelor’s in Physics from Lorestan University (2004–2008). He pursued further specialization in Solid-State Physics, completing his Master’s (2008–2011) and Ph.D. (2016–2020) at K. N. Toosi University of Technology, Tehran. His doctoral dissertation focused on the temperature-dependent performance of CH3NH3PbI3 perovskite solar cells, demonstrating his commitment to solving real-world challenges in renewable energy technologies.

💼 Professional Endeavors

Dr. Shahivandi has been an integral part of Shahed University since 2014, serving as both a Laboratory Supervisor and a Lecturer. His teaching portfolio spans foundational and advanced topics, including General Physics, Electricity and Magnetism, and Physical Properties of Materials. As a Teaching Assistant at K. N. Toosi University, he gained early exposure to educational excellence, fostering his skills in mentorship and pedagogy.

🔬 Contributions and Research Focus

Dr. Shahivandi’s research interests are deeply rooted in computational physics, with key contributions in:

  • Perovskite Solar Cells: Developing models to optimize performance and minimize degradation.
  • Carbon Nanotubes: Investigating catalytic growth mechanisms for double-walled carbon nanotubes.
  • Crystals: Studying the growth mechanisms of Calcium Fluoride and Germanium crystals.
    His theoretical and computational methodologies have led to several impactful publications in IEEE Journal of Photovoltaics and Solar Energy Materials & Solar Cells.

🌍 Impact and Influence

Dr. Shahivandi’s work on temperature effects and degradation mechanisms in perovskite solar cells has paved the way for more efficient renewable energy technologies. His insights into semiconductors and nanostructures have influenced peers and inspired collaborative research. His methodological rigor ensures that his findings resonate across academic and industrial communities.

🛠 Research Skills

Dr. Shahivandi excels in:

  • Computational Tools: Expertise in Molecular Dynamics Simulation and Density Functional Theory (DFT).
  • Analytical Techniques: Proficiency with Atomic Force Microscopy (AFM) and Vibrating-Sample Magnetometer (VSM).
  • Model Development: Skilled in mathematization and modeling of complex physical phenomena.
  • Project Management: Adept at leading and organizing multi-faceted research projects.

🏆 Awards and Honors

Dr. Shahivandi has been recognized for his scientific excellence and educational impact. His achievements include poster presentations at national nanoscience congresses and impactful research contributions published in leading journals.

🌟 Legacy and Future Contributions

Dr. Shahivandi’s legacy is marked by his dedication to advancing renewable energy technologies and materials science. Looking ahead, he aims to explore novel nanomaterials for energy applications and foster global collaborations to tackle pressing challenges in sustainable development.

Publication top notes

Temperature dependence of iodine vacancies concentration in CH3NH3PbI3 perovskite: A theoretical analysis

  • Authors: Hamid Shahivandi, Mohamadhosein Nosratjoo
    Journal: Physica B: Condensed Matter
    Year: 2024

Theory of light-induced degradation in perovskite solar cells

  • Authors: Hamid Shahivandi
    Journal: (No journal name provided)
    Year: 2020

Study of the effect of temperature on light-induced degradation in methylammonium lead iodine perovskite solar cells

  • Authors: Hamid Shahivandi, Majid Vaezzadeh, Mohammadreza Saeidi
    Journal: Solar Energy Materials and Solar Cells
    Year: 2020

Iodine Vacancy Formation Energy in CH3NH3PbI3 Perovskite

  • Authors: Hamid Shahivandi, Majid Vaezzadeh, Mohammadreza Saeidi
    Journal: IEEE Journal of Photovoltaics
    Year: 2020

Theoretical Study of Effective Parameters in Catalytic Growth of Carbon Nanotubes

  • Authors: Hamid Shahivandi, Majid Vaezzadeh, Mohammadreza Saeidi
    Journal: physica status solidi (a)
    Year: 2017

 

 

 

Thierry goudon | Theoretical Advances | Best Researcher Award

Dr. Thierry goudon | Theoretical Advances | Best Researcher Award

univ. cote d’azur | France

Dr. Thierry Goudon is a renowned Senior Research Scientist at INRIA and a professor with a rich academic background in applied mathematics. Throughout his career, Goudon has contributed significantly to numerical analysis, kinetic theory, and fluid dynamics, working at leading French universities and research institutions.

👨‍🎓Profile

Google scholar

Scopus

🎓 Early Academic Pursuits

Dr. Goudon pursued a Magistère MATMECA in applied mathematics and mechanics at the University of Bordeaux 1 in the early 1990s, where he excelled by graduating ranked 1st. He went on to complete a PhD in applied mathematics in 1997, under the guidance of K. Hamdache. His early studies laid a strong foundation for his later groundbreaking work in modeling and scientific computing.

🧑‍💻 Professional Endeavors

Since 2007, Dr. Goudon has been a Senior Research Scientist at INRIA, specializing in complex systems like energy and environmental flows. He has headed multiple project teams, including COFFEE (COmplex Flows For Energy and Environment) and SIMPAF (SImulation and Models for Particles and Fluids), and served as a fellow at prestigious institutions like Ecole Centrale Marseille and ENS Paris. Goudon’s professional journey has been marked by his leadership roles in research, particularly in fluid dynamics, particle systems, and mathematical modeling.

🧑‍🔬 Contributions and Research Focus

Dr. Goudon’s research primarily focuses on kinetic and fluid dynamics, radiative transfer, and particle-fluid interactions. His pioneering work includes hydrodynamic limits for the Vlasov-Navier-Stokes equations, the development of kinetic schemes for Euler models, and biogeography models in microbiota research. His research has advanced mathematical modeling techniques for real-world problems in energy, environment, and cancer treatment.

🌍 Impact and Influence

Dr. Goudon’s influence extends beyond academia, with significant roles in various scientific committees and advisory boards. He contributed to the national AI report, chaired the scientific board at LJAD/Math. Dept. Univ. Côte d’Azur, and played key roles in evaluating research units across Europe, particularly in Portugal. His work has had a broad impact on the international scientific community, shaping research directions and funding policies.

📚 Academic Cites

Dr. Goudon has authored over 130 publications in prestigious journals, covering topics like reaction-diffusion equations, shock profiles, and radiative hydrodynamics. His work, including co-authored papers such as Hydrodynamic limits for Vlasov-Navier-Stokes equations and Analysis of large amplitude shock profiles, is frequently cited by researchers in the fields of numerical analysis, kinetic theory, and computational physics.

🛠️ Research Skills

Dr. Goudon has a profound expertise in numerical methods, particularly in kinetic schemes, fluid dynamics, and partial differential equations. He is skilled in the development of high-performance algorithms for complex simulations involving particles, fluids, and radiative transfer. His technical proficiency has also extended to the development of mathematical models for various applications, from cancer treatment to plasma physics.

🧑‍🏫 Teaching Experience

Goudon has a long history of teaching and mentoring students in applied mathematics. He has supervised doctoral students, led PhD programs in applied mathematics, and been a member of numerous academic juries and committees. His pedagogical focus has been on numerical analysis, scientific computing, and mathematical modeling.

🏅 Awards and Honors

Throughout his distinguished career, Goudon has received several accolades, including the R. Dautray Prize (SMAI–CEA) in 2008 for his work on radiative transfer. He has also been honored for his contributions to scientific computing, mathematics, and research leadership. His recognition within both French and international scientific communities underscores his exceptional impact on the field.

🏛️ Legacy and Future Contributions

Goudon’s legacy is marked by his groundbreaking research in mathematical modeling and numerical methods, which continues to influence scientific computing and applied mathematics. As a leader, his future contributions are poised to advance interdisciplinary research, with applications spanning energy, environment, and medicine. His ongoing projects promise to push the boundaries of simulation techniques and complex systems modeling.

  Publications Top Notes

Shock profiles for hydrodynamic models for fluid-particles flows in the flowing regime

  • Authors: Goudon, T., Lafitte, P., Mascia, C.
    Journal: Physica D: Nonlinear Phenomena
    Year: 2024

An explicit well-balanced scheme on staggered grids for barotropic Euler equations

  • Authors: Goudon, T., Minjeaud, S.
    Journal: ESAIM: Mathematical Modelling and Numerical Analysis
    Year: 2024

A Simple Testbed for Stability Analysis of Quantum Dissipative Systems

  • Authors: Goudon, T., Rota Nodari, S.
    Journal: Annales Henri Poincare
    Year: 2024

Shock Profiles for Fluid-Particles Flows

  • Authors: Goudon, T., Lafitte, P., Mascia, C.
    Journal: SEMA SIMAI Springer Series
    Year: 2024

A Model of Particles Interacting with Thermal Traps

  • Authors: Goudon, T.
    Journal: Journal of Statistical Physics
    Year: 2023

 

 

jianzhao Wu | Computational Methods | Best Researcher Award

Assoc. Prof. Dr. jianzhao Wu | Computational Methods | Best Researcher Award

Huazhong University of Science and Technology | China

Jianzhao Wu  is a renowned mechanical engineer specializing in laser manufacturing technologies and sustainability-focused research. His academic and professional journey has spanned several prestigious institutions, including the National University of Singapore (NUS) and Huazhong University of Science and Technology (HUST), where he obtained his PhD in Mechanical Engineering. Wu has made significant contributions to the fields of laser-arc hybrid welding, laser additive manufacturing, and optimization algorithms for manufacturing processes. His works have been widely recognized and published in high-impact journals.

👨‍🎓Profile

Google scholar

Orcid

Early Academic Pursuits 🎓

Wu’s academic career began with a Master’s degree in Mechanical Engineering at Ningbo University, where he explored cutting performance and chip control in Polycrystalline Diamond (PCD) tools. His research interests were initially shaped around tool performance and tribology, paving the way for his later work in laser processing and sustainability. His excellence in research was quickly recognized, with awards such as the National Scholarship and the “Self-strengthening Star” Nomination Award for university students.

Professional Endeavors 💼

Wu’s professional development saw a significant leap when he joined Huazhong University of Science & Technology (HUST), where he worked on cutting-edge research in digital manufacturing and environmentally sustainable technologies. As a Joint Ph.D. student at NUS, Wu collaborated on international projects with Manchester University and Loughborough University to promote low-carbon laser processing technologies. His research involves carbon emission modeling, multi-objective optimization using machine learning algorithms, and laser surface treatment.

Contributions and Research Focus 🔬

Wu’s research focuses on several key areas, including:

  • Low-carbon Laser Manufacturing: He is particularly interested in laser-arc hybrid welding, laser cleaning, and laser additive manufacturing, seeking to optimize these processes for environmental sustainability while maintaining high mechanical properties.
  • Optimization Algorithms: Wu uses machine learning, deep learning models, and convolutional neural networks (CNN) to develop advanced algorithms that optimize the efficiency of manufacturing processes and reduce energy consumption.
  • Tribology and Chip Control: He has conducted pioneering studies in chip breaking mechanisms for PCD tools, particularly in turning operations, focusing on tribological properties and surface textures for improved tool performance.

Research Skills 🔧

Wu has developed expertise in the following key areas:

  • Laser Processing Technologies: Mastery in laser-arc hybrid welding and additive manufacturing techniques for sustainability.
  • Optimization Algorithms: Skilled in data-driven models, ensemble learning, and meta-modeling to optimize manufacturing systems.
  • Carbon Emission Modeling: Advanced techniques to measure and reduce carbon emissions in laser-based processes.
  • Tribology and Surface Engineering: In-depth understanding of tribological properties and laser-textured surfaces for enhanced tool life and performance.

Teaching Experience 📚

Wu has mentored and supervised several undergraduate and postgraduate students in their research projects. His teaching experience at both HUST and NUS has allowed him to guide students in areas related to laser technologies, tribology, and sustainable manufacturing. His involvement in both teaching and research enables him to integrate theoretical knowledge with practical applications, preparing students for the evolving demands of the manufacturing industry.

Legacy and Future Contributions 🔮

Wu is poised to make substantial contributions to sustainable manufacturing and green technologies in the coming years. His work in laser-based technologies has already influenced the global manufacturing landscape, and he continues to explore innovative solutions for low-carbon processes.

Publications Top Notes

Multi-Objective Parameter Optimization of Fiber Laser Welding Considering Energy Consumption and Bead Geometry

  • Authors: Jianzhao Wu, Ping Jiang, Chaoyong Zhang, et al.
    Journal: IEEE Transactions on Automation Science and Engineering
    Year: 2021

Data-driven Multi-objective Optimization of Laser Welding Parameters of 6061-T6 Aluminum Alloy

  • Authors: Jianzhao Wu
    Journal: Journal of Physics: Conference Series
    Year: 2021

Tribological Properties of Bronze Surface with Dimple Textures Fabricated by the Indentation Method

  • Authors: Jianzhao Wu, Aibing Yu, Qiujie Chen, et al.
    Journal: Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology
    Year: 2020

Study on Position of Laser Cladded Chip Breaking Dot on Rake Face of HSS Turning Tool

  • Authors: Jianzhao Wu, Chenchun Shi, Aibing Yu, et al.
    Journal: International Journal of Machine Tools and Manufacture
    Year: 2017

Comparisons of Tribological Properties Between Laser and Drilled Dimple Textured Surfaces of Medium Carbon Steel

  • Authors: Jianzhao Wu, Aibing Yu, Chenchun Shi, et al.
    Journal: Industrial Lubrication and Tribology
    Year: 2017

 

 

Kerem Mertoğlu | Computational Methods | Best Researcher Award

Assist. Prof. Dr. Kerem Mertoğlu | Computational Methods | Best Researcher Award

Professor (Assistant) at Usak University, Turkey

👨‍🎓 Profiles

Google scholar

Scopus

🧑‍🔬📚Summary

Dr. Kerem Mertohğlu is an Assistant Professor with expertise in horticultural science, focusing on fruit cultivation and breeding. His research spans a range of topics including fruit disease resistance, plant biochemistry, and sustainable agriculture practices. He is active in national and international projects and has contributed to numerous publications in reputable journals. 🧑‍🔬📚

Education

  • Doctoral Degree (2017) in Horticulture, specializing in Fruit Breeding and Cultivation 🌿🎓

Professional Experience

  • Assistant Professor, Usak University, Faculty of Agriculture (2023 – Present) 🍏
  • Researcher, Various National and International Research Projects 📊
  • Visiting Researcher, Leibniz University, Germany (2021-2022) 🌍

Research Interests

  • Fruit Breeding & Cultivation 🍎🍇
  • Plant Disease Resistance (e.g., Erwinia amylovora in pear) 🌾🔬
  • Phytochemical Characteristics & Antioxidant Activity in fruits 🍒
  • Impact of Environmental Factors (e.g., altitude on fruit quality) 🌄
  • Sustainable Agricultural Practices and Post-Harvest Technology 🍃

Key Projects

  • Strengthening Social Capital for Rural Development (EU Project) 🌍
  • Development of Liquid Chromatography for Organic Acid Detection (National Project) 🔬

Top Noted Publications

Screening and classification of rosehip (Rosa canina L.) genotypes based on horticultural characteristics
  • Authors: Mertoğlu, K., Durul, M.S., Korkmaz, N., Bulduk, I., Esatbeyoglu, T.
    Journal: BMC Plant Biology (2024)
Mineral composition modulates Erwinia amylovora resistance in pear based on path analysis
  • Authors: Mertoğlu, K., Evrenosoğlu, Y., Akkurt, E., Yeşilbaş, M.F., Gülmezoğlu, N.
    Journal: European Journal of Plant Pathology (2024)
Preharvest Salicylic Acid and Oxalic Acid Decrease Bioactive and Quality Loss in Blackberry (cv. Chester) Fruits during Cold Storage
  • Authors: Erbas, D., Mertoğlu, K., Eskimez, I., Kaki, B., Esatbeyoglu, T.
    Journal: Journal of Food Biochemistry ( 2024)
Maternal Environment and Priming Agents Effect Germination and Seedling Quality in Pitaya under Salt Stress
  • Authors: Kenanoğlu, B.B., Mertoğlu, K., Sülüşoğlu Durul, M., Korkmaz, N., Çolak, A.M.
    Journal: Horticulturae (2023)
Pollinizer Potentials of Reciprocally Crossed Summer Apple Varieties by Using ANOVA and Resampling Based MANOVA
  • Authors: Akkurt, E., Mertoğlu, K., Evrenosoğlu, Y., Alpu, Ö.
    Journal: Erwerbs-Obstbau (2023)