Hadji Chikh Ali | Computational Methods | Best Researcher Award

Dr. Hadji Chikh Ali | Computational Methods | Best Researcher Award

University of Relizane | Algeria

Dr. Chikh Ali Hadji is a dedicated student and researcher specializing in Material Physics and Energy Physics. He is currently pursuing his doctoral studies at Ahmed Zabana Reizane, Algeria, following his strong academic foundation from Dr. Moulay Tahar Saida University. In addition to his scientific pursuits, Hadji is a sports enthusiast, an Algerian judo champion, and a certified first aider.

👨‍🎓Profile

Google scholar

Early Academic Pursuits 🎓

Hadji’s academic journey began with a Baccalaureate in Experimental Science in 2015, followed by a License in Radiation Physics (2015–2018) and a Master’s degree in Radiation Physics and Matter Science (2018–2020), both from Dr. Moulay Tahar Saida University. These studies laid the groundwork for his specialization in material science and his current focus on optoelectronic and thermoelectric properties of materials, particularly double perovskites.

Professional Endeavors 💼

Hadji is not only a researcher but also has a versatile professional background. He has served as a pharmacist salesman and is the founder of the Amal Awlad Yahyat Elbayed sports club. As a leading sports educator, Hadji specializes in swimming, and his experience as a judo coach further highlights his commitment to youth development and physical education. He also holds certification in first aid, contributing to his diverse skill set.

Contributions and Research Focus 🔬

Hadji’s research is centered around material physics and energy physics, particularly focusing on the optoelectronic and thermoelectric properties of double perovskites for use in renewable energy applications. His research aims to better understand materials like Cs2BaSrI6 and Cs2ZnPbX6, investigating their structural, electronic, and optical properties through ab-initio studies. He has contributed significantly to conferences such as the SNCV 2024 and ICMSE 2024, showcasing his work on perovskite solar cells and thermoelectrics.

Impact and Influence 🌍

Hadji’s contributions to material science and energy physics are steadily increasing his influence in these fields. His publications in reputable journals such as Materials Science and Engineering: B and Annals of West University of Timisoara-Physics have garnered attention for their exploration of novel materials like double perovskites. His ability to collaborate and present his findings at international seminars and conferences further amplifies his impact on the scientific community.

Research Skills 🧠

Hadji has a highly technical skill set, excelling in scientific computing tools such as Wien2k, Origin, Python, Matlab, and Labview. These tools enable him to conduct detailed simulations and ab-initio studies, providing insights into the electronic and optical properties of materials. His proficiency in these areas makes him a strong researcher capable of making valuable contributions to material design and renewable energy technologies.

Legacy and Future Contributions 🌟

Hadji’s scientific trajectory suggests that he will play a key role in advancing renewable energy technologies and material design in the future. His research into double perovskites and heterojunction solar cells is pushing the boundaries of optoelectronics and thermoelectrics, and his contributions will likely shape sustainable energy solutions. His ability to balance both academic and sports leadership also positions him to influence future generations in both the scientific and sporting communities.

Publications Top Notes

I-MASnBr3/CZTGS Heterojunction Solar Cell Layer Optimization Investigated Using Scaps-1D Software Exhibited Excellent Performance at 50%

    • Authors: M Ghaleb, A Arrar, AH Chikh, H Bendjilali, O Zerrouki
    • Journal: Annals of the West University of Timisoara. Physics Series
    • Year: 2024

Ab initio study of the optoelectronic and thermoelectric properties of the new double perovskite Cs2ZnPbX6 (X= Br, Cl)

    • Authors: CA Hadji, A Arrar, M Ghaleb, H Bendjilali, O Zerrouki
    • Journal: Materials Science and Engineering: B
    • Year: 2024

The structural, electronic, elastic, and optical properties of new double perovskite Cs2CdPbI6 were investigated using a DFT and SCAPS-1D simulation

    • Authors: M Ghaleb, A Arrar, HC Ali, H Bendjilali, O Zerrouki
    • Year: 2024

Qingguo Lü | Computational Methods | Best Researcher Award

Assoc. Prof. Dr. Qingguo Lü | Computational Methods | Best Researcher Award

Chongqing University | China

Dr. Qingguo Lü is currently an Associate Professor at the College of Computer Science, Chongqing University, China. With a Ph.D. in Computational Intelligence and Information Processing from Southwest University, his academic journey has been marked by excellence. His work primarily focuses on distributed control and optimization in networked systems, especially in areas involving machine learning, cooperative control, and smart grids.

👨‍🎓Profile

Scopus

🎓 Early Academic Pursuits

Dr. Lü began his academic journey with a Bachelor’s degree in Measurement Control Technology and Instrument from Anhui University of Technology, before advancing to a Master’s degree in Signal and Information Processing at Southwest University. His early academic years were dedicated to mastering core concepts of computational intelligence and information processing, laying the foundation for his later groundbreaking research.

💼 Professional Endeavors

Throughout his career, Dr. Lü has held significant positions, including being a Research Assistant at the Texas A&M University Science Program, Qatar, where he contributed to the research in networked control systems, distributed computing, and smart grids. Following this, he transitioned to his postdoctoral research at Chongqing University, collaborating with Prof. Shaojiang Deng on topics like cooperative control, distributed optimization, and machine learning. His role as an Associate Professor has enabled him to further deepen his research and lead academic projects.

🔬 Contributions and Research Focus

Dr. Lü’s research is deeply embedded in solving real-world problems using distributed optimization algorithms across networked systems. Notable contributions include the development of asynchronous algorithms for decentralized resource allocation, privacy protection algorithms, and the design of algorithms for economic dispatch in smart grids. His research focus is centered on improving distributed optimization through stochastic algorithms, cooperative control, and networked machine learning.

📚 Academic Cites

Dr. Lü’s research has been extensively cited in major journals, indicating the high impact of his work. For example, his paper in IEEE Transactions on Cybernetics (2021) has garnered attention for its privacy-masking stochastic algorithms, highlighting his role in advancing the field of privacy in decentralized systems. His consistent contributions to top-tier journals underscore his prominence as a thought leader in computational intelligence and information processing.

🛠 Research Skills

Dr. Lü possesses advanced skills in developing decentralized algorithms, with expertise in distributed optimization, privacy protection, and machine learning for networked systems. His ability to design efficient algorithms that are not only theoretically sound but also computationally feasible has enabled the practical deployment of these methods in diverse real-world applications, including energy optimization and economic dispatch in smart grids.

🏫 Teaching Experience

As an Associate Professor, Dr. Lü plays an active role in shaping the next generation of researchers and engineers. His teaching focuses on distributed control systems, networked optimization, and machine learning, ensuring that students are well-versed in the latest techniques and applications of computational intelligence. His involvement in academic mentorship and research supervision is highly regarded, helping foster a collaborative and innovative research environment.

🏆 Legacy and Future Contributions

Dr. Lü’s career is already distinguished by his extensive research publications, patents, and contributions to academic growth. His research continues to shape the development of distributed algorithms for complex networks, offering solutions that are highly relevant in today’s rapidly evolving technological landscape. Looking ahead, he aims to expand his work on energy optimization, privacy protection, and networked control systems to tackle emerging challenges in fields like smart cities and autonomous systems.

Publications Top Notes

 

 

Muhammad Abubaker | Computational Methods | Best Researcher Award

Mr. Muhammad Abubaker | Computational Methods | Best Researcher Award

PhD Scholar at Kyungpook National University, South Korea

Muhammad Abubaker is a dedicated researcher and Ph.D. candidate at Kyungpook National University (KNU), South Korea, specializing in computational fluid dynamics (CFD) and energy systems. His research primarily focuses on the Lattice Boltzmann Method (LBM) for simulating fluid dynamics, particularly in lithium-ion batteries, thermal management of electric vehicle (EV) batteries, and energy harvesting systems.

🎓Profile

🧑‍🎓 Early Academic Pursuits

Muhammad Abubaker’s academic journey has been marked by a strong foundation in Mechanical Engineering, starting with his undergraduate studies at Bahauddin Zakariya University, Multan, Pakistan, where he completed his B.Sc. in Mechanical Engineering. His early interest in thermal systems engineering was reflected in his M.Sc. at the University of Engineering and Technology, Taxila, where he researched the effect of vapor velocity on condensate retention on pin-fin tubes, a crucial study for improving heat transfer systems. His academic excellence during these years was recognized with multiple scholarships, including the MSc Scholarship from UET Taxila and later, the prestigious Ph.D. Kings Scholarship at Kyungpook National University, South Korea.

💼 Professional Endeavors

Abubaker’s professional journey includes a rich teaching career as a Lecturer at COMSATS University Islamabad, Sahiwal, Pakistan, where he taught courses on Thermodynamics, Fluid Mechanics, Power Plants, and Renewable Energy Technologies. His commitment to teaching excellence was reflected in his design of outcome-based education (OBE) courses, as well as his innovative hands-on approach to learning through semester projects on heat exchangers, power plant schematics, and aeroplane models. His contributions to curriculum design and ISO compliance further demonstrate his leadership within academia.

🧪 Contributions and Research Focus

Muhammad Abubaker’s primary research focus is in the development and application of Lattice Boltzmann Method (LBM) for simulating complex multicomponent fluid dynamics in various systems. His work on Li-ion battery wettability is groundbreaking, as it addresses key challenges in battery performance and safety. Through his innovative use of LBM, he has investigated the electrolyte wetting behavior in lithium-ion batteries, offering insights into optimizing battery designs for better performance and longevity.

Abubaker is also focused on thermal management of electric vehicle (EV) batteries—a crucial aspect of improving EV performance and energy efficiency. His research into thermal LBM in porous media and energy harvesting systems, such as solar panels and flexible structures, aims to push the boundaries of energy conversion and sustainability. His work on energy systems, particularly in solar energy technology and energy harvesters, is a testament to his commitment to advancing green energy solutions.

🌍 Impact and Influence

Abubaker’s research has had significant impact, particularly in the field of energy storage and battery technology, with implications for industries ranging from automotive to consumer electronics. His work on battery electrode-electrolyte interfaces is helping solve critical issues related to wettability and ion transport, thereby contributing to the development of more efficient and durable lithium-ion batteries.

📚 Academic Cites and Scholarly Contributions

Abubaker’s academic contributions are well-recognized in the scholarly community, as evidenced by his numerous journal publications in highly regarded peer-reviewed journals, such as Energy Reports, Thermal Science, and Applied Thermal Engineering. His Google Scholar Profile highlights the growing recognition of his work, with citations that underscore the relevance and impact of his research. Notable papers such as “Wetting Performance Analysis of Porosity Distribution in NMC111 Layered Electrodes in Li-Ion Batteries” and “Wetting Characteristics of Li-ion Battery Electrodes” have made significant strides in advancing battery technology and thermal management.

⚙️ Technical Skills

Abubaker is highly proficient in advanced computational techniques and tools essential for modern engineering and energy research. His technical skills in Lattice Boltzmann Method (LBM), COMSOL Multiphysics, Ansys, ICEM CFD, C++, and CUDA for parallel processing make him an expert in simulating and modeling complex systems. These skills are crucial for his work in energy harvesting, thermal systems, and fluid dynamics, particularly in the context of Li-ion battery performance, fluid-solid interaction, and energy conversion systems.

👨‍🏫 Teaching Experience and Mentorship

Abubaker’s academic career is not only defined by his research but also by his dedication to teaching and mentoring students. As a Lecturer, he developed and implemented Outcome-Based Education (OBE) courses, designed course assessments, and introduced hands-on project-based learning for students. His experience in mentoring final-year projects (including topics like PV panel cooling and ground-coupled heat exchangers) reflects his ability to guide students through complex engineering challenges.

🔮 Legacy and Future Contributions

Muhammad Abubaker is well on his way to leaving a lasting legacy in the fields of energy systems, thermal management, and computational fluid dynamics. His innovative use of Lattice Boltzmann Methods in energy storage and battery systems is paving the way for advancements in battery technology and electric vehicle efficiency.Looking ahead, his future contributions could play a pivotal role in addressing the global need for sustainable energy solutions. His ongoing work on energy harvesting and thermal systems optimization could lead to more efficient renewable energy technologies that are critical for a sustainable future.

📖Publication Top Notes