Sadia Nazir | Computational Particle Physics | Best Researcher Award

Dr. Sadia Nazir | Computational Particle Physics | Best Researcher Award

The University of Lahore | Pakistan

Dr. Sadia Nazir is a distinguished academic and researcher specializing in High Energy Physics with a focus on Computational Physics and Theoretical Physics. She has demonstrated a strong academic background, having achieved significant milestones in the field of Material Science and General Theory of Relativity. She currently holds the position of Assistant Professor at the Department of Physics at the University of Lahore, Lahore, Pakistan. Throughout her career, she has made notable contributions to energy applications and quantum mechanics.

👨‍🎓Profile

Google scholar

Scopus

Early Academic Pursuits 📚

Dr. Nazir began her academic journey with a B.Ed. degree from the University of Sargodha. She pursued an M.Sc. in Computational Physics (2007-2009) followed by an M.Phil. in High Energy Physics, specializing in General Theory of Relativity (2012-2014). Her academic excellence culminated in obtaining a PhD in High Energy Physics with a specialization in Theoretical Computational Physics from the Centre for High Energy Physics at the University of the Punjab in 2022.

Professional Endeavors 🏆

Dr. Nazir has had a significant impact in the field of Physics through her professional roles. She began her teaching career as a Lecturer at Mulhal Science College, Chakwal, from 2010 to 2012. Following this, she joined The University of Lahore, where she served as a Lecturer (2015-2023) and currently holds the position of Assistant Professor since February 2023. Her career trajectory reflects a strong commitment to higher education and academic leadership.

Contributions and Research Focus 🔬

Dr. Nazir’s primary research interests lie in High Energy Physics, Computational Physics, and Material Science. Her work primarily involves theoretical ab-initio calculations, DFT simulations, and the optical, mechanical, and thermoelectric properties of materials for energy harvesting and solar cell applications. Her studies on double perovskites, ferromagnetism, and spintronics have far-reaching implications for the development of next-generation energy devices. Her publications in peer-reviewed journals reflect her significant contributions to the scientific community.

Impact and Influence 🌍

Dr. Nazir’s work has made a lasting impact on the scientific community, with her contributions in quantum mechanics, material science, and energy applications influencing numerous researchers and students alike. Her research is focused on developing new materials and devices that can improve energy conversion and storage. Dr. Nazir’s expertise has also contributed to advancing spintronic technologies, which have vast potential for energy efficiency and data processing.

Academic Citations 📑

Dr. Nazir’s research has gained significant attention in the scientific community, with over 25 published journal papers and highly-cited works on perovskite materials, spintronic devices, and half-metallic ferromagnetism. Her works are widely cited, indicating her research’s importance in advancing energy conversion and quantum mechanics fields.

Research Skills ⚙️

Dr. Nazir possesses extensive skills in Computational Physics, particularly in DFT simulations, quantum mechanics, and material science modeling. She is proficient in advanced programming languages such as Mathematica, C++, and Origin. Her ability to apply ab-initio simulations to investigate the optoelectronic, thermoelectric, and magnetic properties of materials sets her apart in the academic community.

Teaching Experience 🏫

With years of teaching experience, Dr. Nazir has served as an instructor for graduate and undergraduate courses at the University of Lahore. Her courses cover various areas such as Quantum Mechanics, Electrodynamics, Differential Geometry, and Mathematical Methods of Physics. She has supervised several M.Phil. and PhD students, guiding them through advanced research topics related to material properties and energy applications. Her teaching is known for its depth and clarity, making complex topics accessible to students.

Legacy and Future Contributions 🌟

Dr. Sadia Nazir is leaving behind a legacy of scientific exploration and academic excellence. Her contributions to computational physics, energy research, and material science will continue to inspire future generations of physicists and researchers. As her work in spintronics, energy harvesting, and solar cell technologies progresses, she is poised to make even more groundbreaking contributions to sustainable energy solutions. Her vision is to bridge the gap between theoretical research and real-world applications in green technologies and energy efficiency.

Publications Top Notes

Systematic study of spin-dependent electronic, mechanical, optoelectronic, and thermoelectric properties of halide double perovskites K2CuCrZ6 (Z= Cl, Br): DFT-calculations

  • Authors: NA Noor, MA Khan, S Niaz, S Mumtaz, S Nazir, KM Elhindi
    Journal: Journal of Physics and Chemistry of Solids
    Year: 2025

Unveiling the half-metallic ferromagnetism and transport properties of LiFeX3 (X = Cl, Br, I) perovskites for energy conversion and data processing devices

  • Authors: MA Yasir, M Bououdina, NA Noor, MM Saad H.-E, S Nazir
    Journal: Optical and Quantum Electronics
    Year: 2024

Investigation of half-metallic properties of Tl2Mo(Cl/Br)6 double perovskites for spintronic devices

  • Authors: Sadia Nazir et al.
    Journal: RSC Advances
    Year: 2024

Innovative multi-layered Fe3O4-Gr/carbon/polypyrrole nanofiber composite: “A new frontier in dielectric enhancement and EMI shielding”

  • Authors: U Anwar, M Rafi, NA Noor, S Nazir, S Mumtaz, IM Moussa
    Journal: RSC Advances
    Year: 2024

Mechanical, Magnetic, and Optical Characteristics of Tm-Based Chalcogenides for Energy-Harvesting Applications

  • Authors: M Asghar, S Nazir, T Hameed, NA Noor, YM Alanazi, S Mumtaz
    Journal: Physica Status Solidi (b)
    Year: 2023

 

 

jianzhao Wu | Computational Methods | Best Researcher Award

Assoc. Prof. Dr. jianzhao Wu | Computational Methods | Best Researcher Award

Huazhong University of Science and Technology | China

Jianzhao Wu  is a renowned mechanical engineer specializing in laser manufacturing technologies and sustainability-focused research. His academic and professional journey has spanned several prestigious institutions, including the National University of Singapore (NUS) and Huazhong University of Science and Technology (HUST), where he obtained his PhD in Mechanical Engineering. Wu has made significant contributions to the fields of laser-arc hybrid welding, laser additive manufacturing, and optimization algorithms for manufacturing processes. His works have been widely recognized and published in high-impact journals.

👨‍🎓Profile

Google scholar

Orcid

Early Academic Pursuits 🎓

Wu’s academic career began with a Master’s degree in Mechanical Engineering at Ningbo University, where he explored cutting performance and chip control in Polycrystalline Diamond (PCD) tools. His research interests were initially shaped around tool performance and tribology, paving the way for his later work in laser processing and sustainability. His excellence in research was quickly recognized, with awards such as the National Scholarship and the “Self-strengthening Star” Nomination Award for university students.

Professional Endeavors 💼

Wu’s professional development saw a significant leap when he joined Huazhong University of Science & Technology (HUST), where he worked on cutting-edge research in digital manufacturing and environmentally sustainable technologies. As a Joint Ph.D. student at NUS, Wu collaborated on international projects with Manchester University and Loughborough University to promote low-carbon laser processing technologies. His research involves carbon emission modeling, multi-objective optimization using machine learning algorithms, and laser surface treatment.

Contributions and Research Focus 🔬

Wu’s research focuses on several key areas, including:

  • Low-carbon Laser Manufacturing: He is particularly interested in laser-arc hybrid welding, laser cleaning, and laser additive manufacturing, seeking to optimize these processes for environmental sustainability while maintaining high mechanical properties.
  • Optimization Algorithms: Wu uses machine learning, deep learning models, and convolutional neural networks (CNN) to develop advanced algorithms that optimize the efficiency of manufacturing processes and reduce energy consumption.
  • Tribology and Chip Control: He has conducted pioneering studies in chip breaking mechanisms for PCD tools, particularly in turning operations, focusing on tribological properties and surface textures for improved tool performance.

Research Skills 🔧

Wu has developed expertise in the following key areas:

  • Laser Processing Technologies: Mastery in laser-arc hybrid welding and additive manufacturing techniques for sustainability.
  • Optimization Algorithms: Skilled in data-driven models, ensemble learning, and meta-modeling to optimize manufacturing systems.
  • Carbon Emission Modeling: Advanced techniques to measure and reduce carbon emissions in laser-based processes.
  • Tribology and Surface Engineering: In-depth understanding of tribological properties and laser-textured surfaces for enhanced tool life and performance.

Teaching Experience 📚

Wu has mentored and supervised several undergraduate and postgraduate students in their research projects. His teaching experience at both HUST and NUS has allowed him to guide students in areas related to laser technologies, tribology, and sustainable manufacturing. His involvement in both teaching and research enables him to integrate theoretical knowledge with practical applications, preparing students for the evolving demands of the manufacturing industry.

Legacy and Future Contributions 🔮

Wu is poised to make substantial contributions to sustainable manufacturing and green technologies in the coming years. His work in laser-based technologies has already influenced the global manufacturing landscape, and he continues to explore innovative solutions for low-carbon processes.

Publications Top Notes

Multi-Objective Parameter Optimization of Fiber Laser Welding Considering Energy Consumption and Bead Geometry

  • Authors: Jianzhao Wu, Ping Jiang, Chaoyong Zhang, et al.
    Journal: IEEE Transactions on Automation Science and Engineering
    Year: 2021

Data-driven Multi-objective Optimization of Laser Welding Parameters of 6061-T6 Aluminum Alloy

  • Authors: Jianzhao Wu
    Journal: Journal of Physics: Conference Series
    Year: 2021

Tribological Properties of Bronze Surface with Dimple Textures Fabricated by the Indentation Method

  • Authors: Jianzhao Wu, Aibing Yu, Qiujie Chen, et al.
    Journal: Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology
    Year: 2020

Study on Position of Laser Cladded Chip Breaking Dot on Rake Face of HSS Turning Tool

  • Authors: Jianzhao Wu, Chenchun Shi, Aibing Yu, et al.
    Journal: International Journal of Machine Tools and Manufacture
    Year: 2017

Comparisons of Tribological Properties Between Laser and Drilled Dimple Textured Surfaces of Medium Carbon Steel

  • Authors: Jianzhao Wu, Aibing Yu, Chenchun Shi, et al.
    Journal: Industrial Lubrication and Tribology
    Year: 2017