Prashant Thakur | Experimental methods | Best Researcher Award

Assist. Prof. Dr. Prashant Thakur | Experimental methods | Best Researcher Award

Assistant Professor at Career Point University, Hamirpur | India

Dr. Prashant Thakur is an Assistant Professor in the Department of Physics and the Nodal Officer at the Center for Green Energy Research (CGER) at Career Point University, Hamirpur, Himachal Pradesh, India. He is ranked among the Top 0.5% of Researchers Worldwide (2024) by ScholarGPS®, California, US. His expertise lies in Materials Physics, particularly in superparamagnetic lanthanide-doped Mn-Zn ferrite nanoparticles. He has published 22 research articles and holds a patent titled “Superparamagnetic Nanoparticles and Method for Preparation Thereof”. Dr. Thakur has actively contributed to the development of environmentally sustainable technologies in the fields of nanomaterials and green energy.

👨‍🎓Profile

Google scholar

Scopus

ORCID

🎓Education

Dr. Thakur earned his Ph.D. in Materials Physics from Jaypee University of Information Technology, Solan in 2019. He also holds a B.Ed. in Teaching Science and Maths from HP University, Shimla (2014), an M.Sc. in Materials Physics from Shoolini University, Solan (2013), and a B.Sc. in Non-Medical from HP University, Shimla (2011). His education laid a strong foundation in physics and material sciences, preparing him for groundbreaking research in nanomaterials, magnetism, and energy solutions.

🏢Professional Experience

Dr. Thakur is currently serving as an Assistant Professor at Career Point University, Hamirpur. He previously worked as an Assistant Professor in the Department of Physics at Akal College of Basic Sciences, Eternal University (Feb 2019 – Feb 2021). He has also been a Teaching Assistant in the Department of Physics and Materials Science at Jaypee University of Information Technology, Solan, from Aug 2014 – Nov 2018. His academic roles have involved teaching materials physics and guiding research in nanomaterials, particularly superparamagnetic nanoparticles and magnetic ferrites.

🏆Awards and Honors

Dr. Thakur has been ranked among the Top 0.5% of Researchers Worldwide (2024) by ScholarGPS®, USA, a prestigious recognition. He has also received the Best Poster Presentation Award at a National Conference at Shoolini University (2013). Additionally, he has been honored as a Resource Person at the e-workshop on “Materials and their Characterization” at Maharaja Agrasen University, H.P. in 2021. Dr. Thakur’s work has earned him multiple accolades and has significantly contributed to the scientific community.

🧠Research Focus

Dr. Prashant Thakur’s research focuses on the synthesis and characterization of nanomaterials for applications in magnetic materials, environmental remediation, and energy storage. His key interests include superparamagnetic lanthanide-doped Mn-Zn ferrites and their potential in magnetic and electromagnetic applications. His work on bismuth-doped barium hexaferrites and green-synthesized nanoparticles for antimicrobial and photocatalytic applications demonstrates his dedication to sustainable technology. Dr. Thakur is also engaged in exploring green energy solutions to contribute to a cleaner environment.

🔬Research Skills

Dr. Thakur possesses a diverse set of research skills in nanomaterials synthesis, X-ray diffraction, magnetic characterization, and optical properties analysis. He is highly skilled in microwave sintering, sol-gel processes, and citrate sol-gel methods for the development of ferrites and nanoparticles. His expertise in structural and morphological analysis using tools like SEM, TEM, and XPS further enhances his ability to investigate the properties of advanced materials. He also possesses deep experience in electromagnetic shielding, photocatalysis, and environmental applications of nanomaterials, contributing significantly to sustainable material science.

Publications Top Notes

Efficient removal of toxic dyes from water using Mn3O4 nanoparticles: Synthesis, characterization, and adsorption mechanisms

  • Authors: Kamal Kishore, Jaswinder Kaur, Yasser B. Saddeek, Meenakshi Sharma, Manpreet Singh, Prashant Thakur, Dr. Yogesh Kumar Walia, Madan Lal, R. Suman, A.S. Reddy, et al.
    Journal: Journal of Molecular Structure
    Year: 2025

Green synthesized Fe‐doped ZnO NPs using aloe vera gel: Antimicrobial, structural, optical and magnetic properties

  • Authors: Shreya Chauhan, Prashant Thakur, Kamal Kishore, Madan Lal, Pankaj Sharma
    Journal: Journal of the American Ceramic Society
    Year: 2025

Optimized electromagnetic shielding properties using bismuth-doped barium hexaferrite nanoparticles

  • Authors: Neha Thakur, Indu Sharma, Prashant Thakur, Khalid Mujasam Batoo, Sagar E. Shirsath, Gagan Kumar
    Journal: Polyhedron
    Year: 2025

Enhanced photocatalytic and antimicrobial properties of nickel-doped barium M-type hexaferrites synthesized via citrate sol-gel method

  • Authors: Indu Sharma, Neha Thakur, Yasser A.M. Ismail, K.A. Aly, Pankaj Sharma, K.M. Batoo, Prashant Thakur
    Journal: Inorganic Chemistry Communications
    Year: 2024

Improved magneto-dielectric response and dielectric characteristics of rare earth doped Ba and Co based U-type hexaferrite

  • Authors: Indu Sharma, Sunil Sharma, Prashant Thakur, Sumit Bhardwaj, Munisha Mahajan, Shubhpreet Kaur, Gagan Anand, Rohit Jasrotia, A Dahshan, H.I. Elsaeedy, Pankaj Sharma, Gagan Kumar
    Journal: Materials Chemistry and Physics
    Year: 2024

Olfa Turki | Experimental methods | Best Researcher Award

Assist. Prof. Dr. Olfa Turki | Experimental methods | Best Researcher Award

Faculty of Sciences , Tunisia

Olfa Turki is an accomplished Assistant Professor at FST with a deep expertise in Physics, particularly in materials science and piezoelectric nanocomposites. With a PhD in Physics and a Master’s in Condensed Matter Physics, Olfa has built a robust academic career. She has contributed extensively to the development of lead-free ceramics and nanocomposites for sensor technologies. Olfa is also an active participant in international research projects and has presented her findings at numerous conferences worldwide. Beyond academics, she is committed to societal development, having been a candidate in municipal elections in Sfax in 2022. Her research bridges the gap between theoretical studies and practical applications in energy storage and sensors.

👨‍🎓Profile

Scopus

ORCID

🎓Education 

Olfa Turki holds a PhD in Physics from 2017, focusing on materials science, specifically piezoelectric nanocomposites. She completed her Master’s Degree in Condensed Matter Physics in 2013, which provided her with a strong foundation in solid-state physics. Her academic journey began with a Bachelor’s Degree in Physics in 2011, where she gained the knowledge that underpins her later research. Olfa’s educational background is complemented by her Baccalaureate in Mathematics from 2008, which further sharpened her analytical and problem-solving skills. Throughout her studies, Olfa has demonstrated a passion for scientific inquiry and a commitment to advancing knowledge in materials physics. Her academic qualifications are paired with hands-on experience in various scientific programs like Origin and Fullprof, enhancing her ability to analyze and present research data effectively. Olfa’s education continues to shape her innovative approach to solving complex scientific problems.

🏢Professional Experience 

Olfa Turki has accumulated a wealth of experience in teaching and research. She currently serves as an Assistant Professor at the Faculty of Sciences of Tunis (FST), where she teaches physics and conducts cutting-edge research. Olfa has also held contractual assistant positions at various institutions, including the Institute of Physics and Engineering (IPEIS) and the Institute of Information and Communication Technologies (ISGI), from 2015 to 2023. In these roles, she gained extensive experience in curriculum development, lecturing, and mentoring students. Olfa’s practical involvement in research is equally impressive, with significant contributions to projects on sensor autonomy and nanocomposite development. She has worked on national and international projects, collaborating with leading scientists in the field. Olfa has presented her work at various prestigious scientific conferences, both orally and in posters, solidifying her position as a respected researcher in her field.

🏆Awards and Honors

Olfa Turki has been recognized for her outstanding contributions to the field of material science and physics. While no formal awards are mentioned, her significant achievements in research, publications, and conference participation place her in high regard within the scientific community. Her work on piezoelectric nanocomposites and their application in sensor technologies has garnered attention, as evidenced by her numerous publications in high-impact journals such as Applied Surface Science and Ceramics International. In addition, Olfa’s involvement in international research programs like the AUF Research Support Program further highlights her scientific stature. Olfa’s role in municipal elections demonstrates her recognition as a leader in both academia and community involvement. Her ability to balance these responsibilities while maintaining a high standard of academic and research excellence showcases her dedication, which is often celebrated by her peers and colleagues.

🌍Research Focus 

Olfa Turki’s research focuses primarily on the development of lead-free ceramics and piezoelectric nanocomposites. Her work aims to improve the dielectric, ferroelectric, and electrocaloric properties of these materials, making them ideal candidates for use in sensor technologies, energy storage, and nanogenerators. Olfa has conducted in-depth studies on the effects of doping and substitution of various elements, such as lanthanides, to enhance the functional properties of ferroelectric ceramics. Her research has a direct application in creating more sustainable and efficient materials, particularly in the realm of green technologies. Moreover, Olfa explores the structural properties and microstructure of nanocomposites, offering innovative approaches for material synthesis and processing. Her recent international collaboration, NAPES, explores the development of nanocomposites for pressure sensors and energy harvesting, positioning her research at the intersection of advanced material science and applied technologies.

🧠Research Skills

Olfa Turki possesses a strong set of research skills that complement her work in materials science. She is proficient in using scientific programs such as Origin and Fullprof, tools that allow her to analyze complex data and model materials’ behavior. Olfa’s expertise in synthesis techniques, particularly sol-gel hydrothermal synthesis, enables her to create high-performance materials like piezoelectric nanocomposites and lead-free ceramics. Her ability to analyze and interpret dielectric, ferroelectric, and piezoelectric properties is a cornerstone of her research. Olfa is also adept in presenting her findings through oral and poster presentations at conferences, enhancing her scientific communication skills. Furthermore, she collaborates well within interdisciplinary teams and takes an active role in mentoring students, promoting research development. Her work is continually evolving, supported by her ability to stay updated on the latest scientific advancements and her commitment to collaborative research across international platforms.

Publications Top Notes

Sol-gel hydrothermal synthesis of lead-free BT nanoparticles for enhanced dielectric properties in PVDF nanocomposites

  • Authors: O. Turki, A. Slimani, S. Boufid, L. Seveyrat, V. Perrin, R. Ben Hassen, H. Khemakhem
    Journal: Applied Surface Science
    Year: 2025

Electrical, ferroelectric and electro-caloric properties of lead-free Ba₀.₈₅Ca₀.₁₅Ti₀.₉₅(Nb₀.₅Yb₀.₅)₀.₀₅O₃ multifunctional ceramic

  • Authors: I. Zouari, A. Dahri, O. Turki, V. Perrin, L. Seveyrat, Z. Sassi, N. Abdelmoula, H. Khemakhem, W. Dimassi
    Journal: Ceramics International
    Year: 2024

The effect of Erbium on physical properties of the BaCaTi(NbYb)O multifunctional ceramic

  • Authors: I. Zouari, O. Turki, L. Seveyrat, Z. Sassi, N. Abdelmoula, H. Khemakhem
    Journal: Applied Physics A
    Year: 2023

Ferroelectric Properties and Electrocaloric Effect in Dy₂O₃ Substitution on Lead‑Free NBT-6BT Ceramic

  • Authors: O. Turki, A. Slimani, I. Zouari, L. Seveyrat, Z. Sassi, H. Khemakhem
    Journal: Journal of Electronic Materials
    Year: 2022

Improved dielectric, ferroelectric, and electrocaloric properties by Yttrium substitution in NBT-6BT based ceramics

  • Authors: O. Turki, F. Benabdallah, L. Seveyrat, Z. Sassi, V. Perrin, H. Khemakhem
    Journal: Applied Physics A
    Year: 2022

 

 

 

Rajeshree Shinde | Experimental methods | Best Researcher Award

Dr. Rajeshree Shinde | Experimental methods | Best Researcher Award

Sir Vithaldas Thackersey College of Home Science (Empowered Autonomous Status) | India

Dr. Rajeshree Amit Shinde is an Assistant Professor at Sir Vithaldas Thackersey College of Home Science, SNDTWU, Mumbai, with extensive experience in the field of chemistry and education. She has been actively involved in both teaching and administrative responsibilities at various academic levels since 2008. Dr. Shinde is deeply engaged in curriculum development, academic policy, and research. Additionally, she is a coordinator for several committees and has contributed significantly to the quality assurance process at her institution. She is passionate about interdisciplinary learning and has made notable contributions to the integration of science with real-world applications. Dr. Shinde’s research interests span drug-PNP interactions, protein stability, and physicochemical properties of osmolytes.

👨‍🎓Profile

Scopus

🎓Education

Dr. Shinde earned her Ph.D. in Chemistry from the Indian Institute of Technology (IIT) Bombay (2013-2018) under the supervision of Prof. Nand Kishore, focusing on the physicochemical properties of amino acids. She completed her M.Sc. in Chemistry at IIT Bombay (2006-2008), where she demonstrated exceptional academic aptitude with a 7.91 CPI. She also earned her B.Sc. in Chemistry from KET’s V.G. Vaze College, Mumbai, graduating with an impressive 84%. Dr. Shinde has always excelled in her academic journey, from HSC to S.S.C, receiving commendable marks. She has shown significant commitment to continuous professional development through various workshops, training programs, and certifications, including MOOCs and FDPs on topics related to science and education.

🏢Professional Experience

Dr. Shinde has over 15 years of experience in the academic field. Currently, she serves as an Assistant Professor at Sir Vithaldas Thackersey College of Home Science, SNDT Women’s University, since 2010. Prior to this, she was an Assistant Professor at KET’s V.G. Vaze College, Mumbai, from 2008-2009. Throughout her career, Dr. Shinde has undertaken several academic responsibilities, including being a member of the Academic Council, UG Ad-hoc Board of Studies, and a special invitee for the Board of Studies for the Food, Nutrition, and Dietetics Department at her current institution. She has also been involved in the design and development of innovative syllabi for diverse courses. Dr. Shinde has been instrumental in guiding M.Sc. students, shaping the next generation of researchers, and playing a pivotal role in institutional governance.

🏆Awards and Honors

Dr. Shinde’s career is distinguished by several accolades. In 2018, she was the winner of the cartoon competition during Vigilance Awareness Week at IIT Bombay. She has also contributed to national and international journals, with several publications in high-impact research areas such as physicochemical properties of amino acids and quantum dots as antimicrobial agents. Dr. Shinde has actively participated in conferences, workshops, and seminars, presenting her research findings in multiple oral and poster presentations, including those at the Mega Conclave Mission Millets in 2023. Her leadership was recognized in organizing multiple events, including the YUVA Mahotsav and regional seminars. She has also served as an examiner for Ph.D. theses, further cementing her role in the academic community.

📚Research Focus

Dr. Rajeshree Shinde’s research primarily explores drug-PNP interactions, the physicochemical properties of osmolytes, and their impact on protein stability. Her Ph.D. thesis focused on the synergistic effects of amino acids on protein stability, which provides insights into the behavior of osmolytes and biomolecules in various solutions. Dr. Shinde’s expertise includes utilizing advanced instrumental techniques such as UV-VIS spectrophotometry, fluorescence spectrophotometry, and isothermal titration calorimetry. Additionally, her ongoing projects investigate the nutritional efficacy of millets and moringa leaves powder as food fortificants. Dr. Shinde’s interdisciplinary approach combines chemistry with nutrition, making her work relevant to the development of functional foods and dietary interventions. She is actively engaged in research collaborations and has secured research grants for projects on energy bars and protein nanoparticle applications.

🧠Research Skills 

Dr. Rajeshree Amit Shinde is proficient in a range of instrumental techniques that support her research in chemistry and food science. Her expertise includes UV-VIS Spectrophotometry, Fluorescence Spectrophotometry, Isothermal Titration Calorimetry, Circular Dichroism, and High-Performance Liquid Chromatography (HPLC), among others. She has also conducted extensive work with Infrared Spectroscopy to analyze molecular structures and interactions. These techniques enable her to probe the thermodynamic and conformational behavior of proteins in the presence of osmolytes, which is central to her research. Dr. Shinde is skilled in data analysis, utilizing tools like Google Sheets for compiling research data, particularly in the context of AQAR submissions and research publications. Her research not only emphasizes chemical analysis but also integrates interdisciplinary approaches, combining food science, biochemistry, and sustainability, to develop functional food solutions with practical applications.

 

Hosameldeen Elshekh | Experimental methods | Best Researcher Award

Dr. Hosameldeen Elshekh | Experimental methods | Best Researcher Award

Dr. Hosameldeen Elshekh | Southwest jiaotong University | China

👨‍🎓 Profile

🎓 Early Academic Pursuits

Dr. Hosameldeen Elhadi Abdelrhman Elshekh began his academic journey with a B.Ed. (Honors) in Physics and Mathematics from the University of Gezira, Sudan, in 2009. His exceptional performance and passion for physics and materials science paved the way for his higher education. He earned an M.Sc. in Physics from the same institution in 2016, followed by an M.Sc. Qualifying in Physics from the University of Khartoum in 2013. Currently, he is pursuing a Ph.D. in Physics at Southwest Jiaotong University, China, where he has been conducting advanced research since 2018.

🏫 Professional Endeavors

Dr. Hosameldeen’s professional journey commenced as a University Teaching Assistant at the University of Gezira, Sudan (2011–2014). He later progressed to a Physics Lecturer role (2016–2018), where he developed undergraduate physics courses and mentored students. His focus on curriculum innovation and science outreach programs highlights his dedication to fostering education and promoting science in the community.

🔬 Contributions and Research Focus

With expertise in material science, nanomaterials, and memristive devices, Hosameldeen specializes in thin films and their electrical and magnetic properties. His research integrates theoretical and experimental physics, focusing on memristors, resistive switching memory, and nanostructured materials. His work includes advanced synthesis techniques like electrochemical oxidation and magnetron sputtering, along with material characterization using SEM, EDS, and XRD.

🌍 Impact and Influence

Dr. Hosameldeen has co-authored nine SCI-indexed publications, contributing to advancements in resistive switching memory and bioelectronic devices. His collaborative research with peers worldwide reflects his commitment to fostering interdisciplinary partnerships. His work on TiOx-based memristors and MoSe2 nanosphere arrays demonstrates the potential of his innovations in sustainable technologies and electronics.

📚 Academic Citations

Dr. Hosameldeen’s contributions are recognized globally, with his publications indexed in Web of Science, Google Scholar, and ResearchGate. His research on WOx/TiOy heterojunctions and Zn-Al nanosheets-based memristors has been widely cited, underscoring his influence in the field of materials physics.

🛠️ Technical Skills

Hosameldeen excels in synthesis and characterization of nanomaterials, with hands-on expertise in tools like SEM, EDS, XRD, and advanced techniques like electrochemical oxidation. His skills in developing and testing memristive devices and thin-film materials are complemented by his ability to design and implement laboratory modules for educational purposes.

👨‍🏫 Teaching Experience

With over eight years of teaching experience, Hosameldeen has demonstrated excellence in curriculum development, student mentoring, and laboratory instruction. At the University of Gezira, he played a pivotal role in modernizing the physics curriculum and conducting research workshops. His dedication to science outreach programs showcases his passion for empowering students and local communities through education.

🌟 Legacy and Future Contributions

Dr. Hosameldeen’s research is shaping the future of nanotechnology and electronic devices, offering innovative solutions to scientific challenges. His commitment to advancing materials science and mentoring the next generation of scientists cements his legacy as an influential educator and researcher. Looking ahead, he aims to expand his contributions to global scientific collaboration and continue his exploration of sustainable material technologies.

Top Noted Publications

Nonvolatile behavior of resistive switching memory in Ag/WOx/TiOy/ITO device based on WOx/TiOy heterojunction
  • Authors: Hosameldeen Elshekh, Hongyan Wang, Chuan Yang, Shouhui Zhu
    Journal: Journal of Applied Physics
    Year: 2024
Nonvolatile resistive switching memory behavior of the TiOx-based memristor
  • Authors: Hosameldeen Elshekh, Hongyan Wang, Shouhui Zhu, Chuan Yang, Jiangqiu Wang
    Journal: Chemical Physics
    Year: 2024
An excellent resistive switching memory behaviour based on assembled MoSe2 nanosphere arrays
  • Authors: Mao Shuangsuo, Hosameldeen Elshekh, Mayameen S. Kadhim, Yudong Xia, Guoqiang Fu, Wentao Hou, Yong Zhao, Bai Sun
    Journal: Journal of Solid State Chemistry
    Year: 2019
Effect of crystalline state on conductive filaments forming process in resistive switching memory devices
  • Authors: Guo Tao, Hosameldeen Elshekh, Zhou Yu, Bo Yu, Dan Wang, Mayameen S. Kadhim, Yuanzheng Chen, Wentao Hou, Bai Sun
    Journal: Materials Today Communications
    Year: 2019
The pH-controlled memristive effect in a sustainable bioelectronic device prepared using lotus root
  • Authors: Li T, Y. Xu, M. Lei, Y. Zhao, B. Sun, Hosameldeen Elshekh, L. Zheng, X. Zhang, W. Hou
    Journal: Materials Today Sustainability
    Year: 2020

 

 

Feiqian Wang | Experimental methods | Best Researcher Award

Assoc Prof Dr. Feiqian Wang | Experimental methods | Best Researcher Award

Associate Professor at The First Affiliated Hospital of Xi’an Jiaotong University, China

Dr. Feiqian Wang is an Associate Professor in the Department of Ultrasound at the First Affiliated Hospital of Xi’an Jiaotong University. With a postdoctoral background in respiratory medicine and a combined master’s and doctoral degree in internal medicine, Dr. Wang has become a prominent figure in medical imaging, particularly in ultrasound and contrast-enhanced imaging. She has contributed significantly to the early diagnosis of liver diseases, microvascular invasion, and hepatocellular carcinoma. Dr. Wang holds several leadership roles, including Secretary-General of the Ultrasound Physicians Branch of the Shaanxi Medical Association, and has earned numerous national and international research grants.

🎓Profile

👩‍⚕️ Early Academic Pursuits

Feiqian Wang began her academic journey in medicine at Xi’an Jiaotong University, where she earned her undergraduate degree in Clinical Medicine (2002–2007). This foundational training laid the groundwork for her later academic and clinical achievements. Building on this, she pursued a combined Master’s and Doctoral degree in Internal Medicine, which she completed in 2012. Feiqian’s early focus on internal medicine provided her with critical clinical skills, which she later applied to the field of ultrasound imaging. She further refined her expertise as a Postdoctoral Researcher in Respiratory Medicine from 2016 to 2022, a period during which she broadened her research interests and honed her academic focus on diagnostic imaging and its applications in liver and cancer diagnostics.

🏥 Professional Endeavors

Since joining the First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Feiqian Wang has consistently advanced in her medical career. She currently holds the position of Associate Professor in the Department of Ultrasound, where she leads cutting-edge research projects while providing expert medical care. Prior to this role, Feiqian served as an Attending Physician (2019–2021) and as both a Resident and Chief-Resident (2012–2018). Her extensive clinical experience in ultrasound, particularly in hepatocellular carcinoma (HCC) imaging, has shaped her research endeavors and her contributions to the medical field. Feiqian’s professional achievements also include her positions as Secretary-General of the Ultrasound Physicians Branch of the Shaanxi Medical Association and as a reviewer for various high-impact journals.

🔬 Contributions and Research Focus

Feiqian Wang’s research focuses primarily on advanced ultrasound imaging technologies, particularly in the early diagnosis of liver diseases such as hepatocellular carcinoma (HCC). Her work integrates multiple imaging modalities, including contrast-enhanced ultrasound (CEUS) and magnetic resonance imaging (MRI), to assess microvascular invasion and other critical markers of HCC. She has secured numerous research grants, notably from the National Natural Science Foundation of China, which underscores the significance and impact of her work. Feiqian’s research into hepatocellular carcinoma, fusion imaging, and elastography technologies continues to contribute to the diagnostic precision and personalized treatment strategies in oncology. Moreover, her innovative approach to combining S-CEUS, U-CEMRI, and SWI imaging in diagnosing HCC has opened new avenues in clinical practice.

🌍 Impact and Influence

Feiqian Wang’s research has had a profound influence in the realm of diagnostic imaging, particularly in the field of oncology and liver diseases. Her pioneering work on CEUS and MRI fusion imaging, along with her nomogram models for predicting vascular patterns in HCC, has contributed to advancements in non-invasive diagnostics. Feiqian’s research has been widely published in leading medical journals such as Radiology, European Journal of Radiology Open, and Biosci Trends. These publications are frequently cited by other researchers, showcasing the broad influence of her work in the scientific community. Additionally, her contributions to patent innovations in ultrasound technology underscore her role in driving forward new medical technologies and improving clinical practices.

🏅 Academic Citations

Feiqian Wang’s research is well-recognized in the academic community, with numerous publications in high-impact journals over the past five years. Her work has earned her respect both nationally and internationally, with publications cited widely in medical and imaging literature. For example, her study on “Contrast-Enhanced Ultrasound and MRI Fusion Imaging for Hepatocellular Carcinoma Diagnosis” has become a reference point for other researchers in the field. These citations reflect the high quality of her work and its relevance to the evolving medical landscape. Feiqian’s ability to secure multiple research grants also highlights her esteemed position within academic circles, further cementing her credibility as a leading expert in her field.

🖥️ Technical Skills

Feiqian Wang is highly skilled in advanced imaging technologies, with expertise in contrast-enhanced ultrasound (CEUS), elastography, and fusion imaging techniques. She is proficient in integrating various diagnostic methods, such as S-CEUS, U-CEMRI, and SWI, to improve early detection and diagnosis of liver diseases. Her technical proficiency extends to the use of deep learning and AI models for image analysis, as evidenced by her research on breast nodule classification using deep convolutional neural networks. Feiqian’s technical acumen in ultrasound imaging not only enhances her clinical diagnostic abilities but also places her at the forefront of innovative research in the field.

🎓 Teaching Experience

As an Associate Professor in the Department of Ultrasound, Feiqian Wang plays an essential role in shaping the next generation of medical professionals. She has taught and mentored undergraduate and postgraduate students, offering training in ultrasound diagnostic techniques and medical imaging. Her commitment to education is further demonstrated by her leadership in various academic committees, including those related to ultrasound medical engineering. Feiqian’s teaching approach is grounded in practical, hands-on training, ensuring that her students acquire the necessary skills to apply diagnostic imaging techniques in clinical settings.

🌟 Legacy and Future Contributions

Feiqian Wang’s legacy is built upon her groundbreaking research, her commitment to improving diagnostic techniques, and her contributions to medical education. Her work in imaging technology has already revolutionized certain aspects of HCC diagnosis and is expected to have an enduring impact on clinical practices. As a leading figure in her field, Feiqian is poised to continue contributing to advancements in ultrasound and medical imaging technologies. In the future, she plans to further develop multimodal imaging strategies for early disease detection and improve the integration of AI and machine learning in medical diagnostics. Her ongoing research in early liver imaging diagnosis and its clinical applications promises to have a significant impact on the early detection of liver diseases, ultimately saving lives through more precise and timely interventions.

🏆 Awards and Recognition

Throughout her career, Feiqian Wang has received numerous accolades for her contributions to science and medicine. She was awarded the second prize in the 2018 Science and Technology Progress Award of Shaanxi Province for her work on microinflammation mechanisms in CKD patients. Additionally, her excellence in ultrasound imaging was recognized with the “Best Slide Making Award” in the China Contrast-Enhanced Ultrasonography Congress. These accolades, along with her academic and professional achievements, highlight her exceptional skills and dedication to advancing medical knowledge and practice.

📖Publication Top Notes

High Spatiotemporal Resolution Contrast-Free Ultrasound Microvascular Imaging Using Adaptive Weight-Based Nonlinear Compounding
    • Authors: Liyuan Jiang, Hanbing Chu, Yang Liu, Jiacheng Liu, Xiao Su, Yichen Yan, Meiling Liang, Yiran Chen, Chaoyang Zhang, Feiqian Wang et al.
    • Journal: IEEE Transactions on Instrumentation and Measurement
    • Year: 2024
A Nomogram Based on Features of Ultrasonography and Contrast-Enhanced CT to Predict Vessels Encapsulating Tumor Clusters Pattern of Hepatocellular Carcinoma
    • Authors: Litao Ruan, Jingtong Yu, Xingqi Lu, Kazushi Numata, Dong Zhang, Xi Liu, Xiaojing Li, Mingwei Zhang, Feiqian Wang
    • Journal: Ultrasound in Medicine & Biology
    • Year: 2024
Added Value of Ultrasound-Based Multimodal Imaging to Diagnose Hepatic Sclerosed Hemangioma before Biopsy and Resection
    • Authors: Feiqian Wang, Kazushi Numata, Hiromi Nihonmatsu, Makoto Chuma, Naomi Ideno, Akito Nozaki, Katsuaki Ogushi, Mikiko Tanab, Masahiro Okada, Wen Luo et al.
    • Journal: Diagnostics
    • Year: 2022
Accurate Assessment of Vascularity of Focal Hepatic Lesions in Arterial Phase Imaging
    • Authors: Feiqian Wang, Kazushi Numata, Litao Ruan
    • Journal: Radiology
    • Year: 2020

 

 

Abdul Muneeb| Experimental methods | Best Researcher Award

Mr. Abdul Muneeb| Experimental methods | Best Researcher Award

Research Associate at University of Engineering and Technology, Lahore, Pakistan

Abdul Muneeb, born on October 3, 1995, in Pakistan, is an emerging researcher in applied physics. He recently completed his MPhil from the University of Engineering and Technology (UET), Lahore. His academic journey has been marked by a profound commitment to advancing research in nanomaterials, photocatalysis, and experimental plasma physics. His MPhil thesis focused on fabricating Ag-TiO2 nanocomposites using Dielectric Barrier Discharge (DBD) plasma for the photodegradation of methylene blue. Abdul’s dedication to his field is reflected in his published works in high-impact international journals. Currently, he is pursuing a fully funded Ph.D. position to further explore photocatalysis and plasma-based materials, with the goal of making substantial contributions to both academia and industry.

Profile:

Education:

Abdul Muneeb holds an MPhil in Applied Physics from the University of Engineering and Technology (UET), Lahore, which he completed in 2022 with a CGPA of 3.15. His thesis focused on the photocatalytic activities of Ag-TiO2 nanocomposites, which he prepared using Dielectric Barrier Discharge (DBD) plasma. Throughout his education, he developed expertise in various advanced fields, including nanomaterials, experimental plasma physics, and material characterization techniques like XRD, FESEM, and UV-Vis spectroscopy. His coursework included specialized subjects such as photonics, optoelectronics, and advanced lasers. With a strong foundation in applied physics and hands-on experience with experimental techniques, Abdul’s academic training has prepared him for advanced research in plasma and nanotechnology fields.

Professional experience:

Abdul Muneeb has gained valuable experience as a Research Associate at the Faculty of Natural Sciences, UET Lahore, since 2022. In this role, he has been involved in designing and implementing research protocols, developing new product tests, and supervising junior researchers. He has contributed to various research publications and scholarly activities, focusing on nanomaterials and experimental plasma physics. Abdul also worked as a visiting lecturer at UET New Campus KSK from December 2022 to July 2023, where he delivered lectures on various physics topics and guided students through practical laboratory experiments. His experience in both academia and research has equipped him with the skills to effectively communicate scientific knowledge and contribute to cutting-edge research in his field.

Research focus:

Abdul Muneeb’s research focus lies at the intersection of nanotechnology, photocatalysis, and experimental plasma physics. His MPhil research primarily centered on the fabrication of Ag-TiO2 nanocomposites using Dielectric Barrier Discharge (DBD) plasma for environmental applications, specifically in the photodegradation of methylene blue. His work explores the potential of plasma-assisted synthesis methods to enhance the photocatalytic efficiency of nanomaterials. Additionally, Abdul’s interests extend to the development of novel metal oxide semiconductor photocatalysts and the characterization of materials using advanced techniques such as XRD, FESEM, and UV-Vis spectroscopy. He aims to contribute to the fields of plasma physics and nanomaterials by advancing the understanding of how plasma processes can be used to create innovative materials for environmental and industrial applications.

Awards and Honors:

Abdul Muneeb has received recognition for his academic excellence and research contributions. During his MPhil studies, he earned high grades in advanced subjects such as photonics, optoelectronics, and lasers, receiving praise from his professors for his exceptional skills. He secured third position in an energy-saving campaign poster competition during his undergraduate studies at the Government College of Science in Lahore. His research work has been acknowledged through publications in reputed international journals, including Physica B: Condensed Matter and Environmental Health Insights. Abdul has actively participated in various national and international conferences, presenting his research at the 5th International Conference on Material Science & Nanotechnology 2022, where he was a speaker. His dedication to pushing the boundaries of applied physics has earned him admiration from both his mentors and peers.

Publication Top Notes:

  • Publication Title: Emission of ions and electrons correlated with soft and hard x-rays evolution from thermal plasma
    Authors: Ahmad, A.N., Rafique, M.S., Arslan, M., Mahmood, H., Amir, M.
    Publication Year: 2024
    Citations: 0
  • Publication Title: Atmospheric pressure plasma-assisted growth of hexagonal boron nitride nanosheets for improved aluminum hardness
    Authors: Mudassar, M., Rafique, M.S., Naveed, A., Aamir, M., Razaq, M.B.
    Publication Year: 2024
    Citations: 0
  • Publication Title: Enhanced thermal conductivity of plasma generated ZnO–MgO based hybrid nanofluids: An experimental study
    Authors: Nazir, A., Qamar, A., Rafique, M.S., Fayaz, H., Saleel, C.A.
    Publication Year: 2024
    Citations: 3
  • Publication Title: Closed-Loop Implantable Neurostimulators for Individualized Treatment of Intractable Epilepsy: A Review of Recent Developments, Ongoing Challenges, and Future Opportunities
    Authors: Kassiri, H., Muneeb, A., Salahi, R., Dabbaghian, A.
    Publication Year: 2024
    Citations: 0
  • Publication Title: Abatement of Aerosols by Ionic Wind Extracted From Dielectric Barrier Discharge Plasma
    Authors: Arshad, T., Rafique, M.S., Bashir, S., Shahadat, I., Nayab, N.
    Publication Year: 2024
    Citations: 0
  • Publication Title: Fabrication of Ag–TiO2 nanocomposite employing dielectric barrier discharge plasma for photodegradation of methylene blue
    Authors: Muneeb, A., Rafique, M.S., Murtaza, M.G., Rafique, M., Nazir, A.
    Publication Year: 2023
    Citations: 3
  • Publication Title: Automated Door to Prevent COVID-19 using Fuzzy Logic
    Authors: Khokhar, S.-U.-D., Sohaib, R., Muneeb, A., Noor, M.Y., Imran, M.
    Publication Year: 2023
    Citations: 0
  • Publication Title: A 9.5ms-Latency 6.2μJ/Inference Spiking CNN for Patient-Specific Seizure Detection
    Authors: Muneeb, A., Mehrotra, S., Kassiri, H.
    Publication Year: 2023
    Citations: 1
  • Publication Title: Energy-Efficient Spiking-CNN-Based Cross-Patient Seizure Detection
    Authors: Muneeb, A., Kassiri, H.
    Publication Year: 2023
    Citations: 5
  • Publication Title: A 2.7μJ/classification Machine-Learning based Approximate Computing Seizure Detection SoC
    Authors: Muneeb, A., Ali, M., Altaf, M.A.B.
    Publication Year: 2022
    Citations: 7

 

 

Marzieh Abbasi-Firouzjah | Experimental methods | Best Researcher Award

Dr. Marzieh Abbasi-Firouzjah | Experimental methods | Best Researcher Award

Academician/Research Scholar at Hakim Sabzevari University, Iran

Marzieh Abbasi-Firouzjah is an Associate Professor in the Department of Sciences Engineering at Hakim Sabzevari University, Sabzevar, Iran. Born in 1984, she has established herself as a leading expert in plasma engineering, with a particular focus on the photonics field. Dr. Abbasi-Firouzjah has made significant contributions to thin film deposition technologies and plasma systems. Her extensive academic background and research have earned her numerous publications in highly respected journals. With years of experience in both teaching and research, she continues to advance the frontiers of plasma technology while contributing to the academic community through her editorial and review work for prestigious journals.

Profile:

Education:

Dr. Abbasi-Firouzjah completed her Ph.D. in Photonics, specializing in Plasma Engineering, at Shahid Beheshti University’s Laser & Plasma Research Institute from 2010 to 2014. Her doctoral research focused on investigating plasma parameters in silica-based thin films deposited using plasma-enhanced chemical vapor deposition (PECVD), under the supervision of Dr. Babak Shokri. Prior to her Ph.D., she obtained her M.Sc. in Plasma Engineering at the same institution, working on silicon oxide film deposition using TEOS vapor. She began her academic journey with a B.Sc. in Atomic and Molecular Physics from the University of Mazandaran, where she explored underwater acoustic wave tracking for her undergraduate project. Her diverse educational background underpins her advanced research in plasma systems and thin film technology.

Professional experience:

Dr. Abbasi-Firouzjah brings a wealth of experience in both research and teaching, having specialized in the design, construction, and application of plasma systems for thin film deposition. She has worked extensively with RF, MW, and DC pulsed plasma generators, and her expertise includes using PECVD, DBD, and Sputtering reactors. She is proficient in advanced spectroscopy methods and the operation of vacuum systems. Her technical skills extend to the construction of multifunctional systems for plasma chemical vapor deposition and pulsed laser deposition. Dr. Abbasi-Firouzjah is also involved in antibacterial testing and has reviewed research for leading journals like Diamond & Related Materials and IEEE Transactions on Nanotechnology. Her work has helped push the boundaries of plasma engineering applications in both industrial and academic contexts.

Research focus:

Dr. Abbasi-Firouzjah’s research primarily revolves around plasma-enhanced chemical vapor deposition (PECVD) techniques and their application in the fabrication of thin films. Her work explores the optimization of plasma parameters to improve the structural, electrical, and optical properties of silica-based films. She has made significant contributions to the development of transparent, hard optical coatings, as well as the antibacterial and wettability properties of plasma-modified surfaces for biomedical applications. Additionally, her research extends to the deposition mechanisms of silicon oxide films and fluorinated diamond-like carbon films, with a focus on improving the mechanical and electrochemical properties of multilayer coatings. Dr. Abbasi-Firouzjah’s work has implications for industries ranging from optics to biomedicine, where advanced materials are critical for innovation.

Awards and Honors:

Dr. Marzieh Abbasi-Firouzjah has received numerous accolades for her contributions to plasma engineering and thin film technologies. Her research publications, featured in high-impact journals such as Journal of Non-Crystalline Solids and Journal of Thin Solid Films, highlight her leading role in the field. She has been invited to present at major international conferences, including the International Conference on Plasma Surface Engineering and the IEEE International Conference on Plasma Sciences. Dr. Abbasi-Firouzjah’s pioneering work on transparent and hard optical coatings and antibacterial applications of plasma-modified materials has positioned her as a recognized figure in the scientific community. Her dedication to advancing plasma technologies has been acknowledged through her inclusion in prestigious academic and industrial journals.

Publication Top Notes:

  • FTIR analysis of silicon dioxide thin film deposited by metal organic-based PECVD
    Authors: B. Shokri, M.A. Firouzjah, S.I. Hosseini
    Year: 2009
    Citation: 176
  • Investigation of antibacterial and wettability behaviours of plasma-modified PMMA films for application in ophthalmology
    Authors: F. Rezaei, M. Abbasi-Firouzjah, B. Shokri
    Year: 2014
    Citation: 104
  • The effect of TEOS plasma parameters on the silicon dioxide deposition mechanisms
    Authors: M. Abbasi-Firouzjah, S.I. Hosseini, M. Shariat, B. Shokri
    Year: 2013
    Citation: 60
  • Investigation of the properties of diamond-like carbon thin films deposited by single and dual-mode plasma enhanced chemical vapor deposition
    Authors: S.I. Hosseini, B. Shokri, M.A. Firouzjah, S. Kooshki, M. Sharifian
    Year: 2011
    Citation: 30
  • The effect of duty cycle on the mechanical and electrochemical corrosion properties of multilayer CrN/CrAlN coatings produced by cathodic arc evaporation
    Authors: N. Arab Baseria, M. Mohammadi, M. Ghatee, M. Abbasi-Firouzjah, et al.
    Year: 2020
    Citation: 27
  • Improving the oxygen barrier properties of PET polymer by radio frequency plasma-polymerized SiOxNy thin film
    Authors: M. Shahpanah, S. Mehrabian, M. Abbasi-Firouzjah, B. Shokri
    Year: 2019
    Citation: 25
  • Antibacterial properties of fluorinated diamond-like carbon films deposited by direct and remote plasma
    Authors: S.I. Hosseini, Z. Javaherian, D. Minai-Tehrani, R. Ghasemi, Z. Ghaempanah, et al.
    Year: 2017
    Citation: 18
  • Characterization of fluorinated silica thin films with ultra-low refractive index deposited at low temperature
    Authors: M. Abbasi-Firouzjah
    Year: 2015
    Citation: 15
  • Characteristics of ultra low-k nanoporous and fluorinated silica based films prepared by plasma enhanced chemical vapor deposition
    Authors: M. Abbasi-Firouzjah, B. Shokri
    Year: 2013
    Citation: 13
  • Deposition of high transparent and hard optical coating by tetraethylorthosilicate plasma polymerization
    Authors: M. Abbasi-Firouzjah, B. Shokri
    Year: 2020
    Citation: 12