Seyed Rasoul Nabavian | Experimental methods | Best Researcher Award

Assist. Prof. Dr. Seyed Rasoul Nabavian | Experimental methods | Best Researcher Award

Faculty Member at Ayatollah Boroujerdi University, Boroujerd, Iran

👨‍🎓 Profile

Summary🌟

Dr. Seyed Rasoul Nabavian is a highly accomplished civil engineer and academic leader with expertise in structural engineering, dynamic structural identification, and space structures. He holds a PhD in Civil Engineering from Noshirvani University of Technology and is currently a faculty member and head of the Civil Engineering Department at Ayatollah Boroujerdi University. With numerous awards and a strong research background, he has contributed extensively to the fields of concrete technology, modal testing, and structural health monitoring. 🏆

🎓 Education & Academic Excellence

Dr. Seyed Rasoul Nabavian holds a PhD in Civil Engineering from Noshirvani University of Technology, specializing in dynamic properties of double-layer grids. He ranked 19th nationally in the PhD entrance exam, and consistently topped his class during his Bachelor’s and Master’s studies in Structural Engineering, earning top honors and GPAs above 18.

💼Professional Experience

Dr. Nabavian has established himself as a leader in both academia and industry. As a Faculty Member and Head of the Civil Engineering Department at Ayatollah Boroujerdi University, he has mentored countless students and contributed to the growth of the department. His expertise extends beyond the classroom, as he has actively participated in various research initiatives with organizations such as the Defense Industries Organization and the Mazandaran Building Engineering System Organization. Dr. Nabavian’s professional experience also includes roles in concrete laboratory tests, geotechnical studies, and the management of residential building projects.

🌍 Contributions and Research Focus

Dr. Nabavian’s research interests focus on a wide range of cutting-edge topics in civil engineering, particularly in space structures, double-layer grids, cable domes, modal testing, and structural health monitoring. His work in Operational Modal Analysis (OMA) and output-only modal identification has contributed to advancements in damage detection and system identification of structures under dynamic conditions. Additionally, his research on recycled aggregate concrete, fiber-reinforced concrete, and impact-resistant materials aligns with the growing emphasis on sustainable construction.

👨‍🏫Teaching Experience

Dr. Nabavian has consistently demonstrated a passion for education throughout his career. He has taught at Noshirvani University of Technology, Ayatollah Boroujerdi University, and Tabari Higher Education Institute, where he has inspired students with his in-depth knowledge of civil engineering principles. His role as a thesis supervisor and advisor has allowed him to guide emerging researchers in structural health monitoring, seismic evaluation, and material science. He has supervised numerous graduate and postgraduate theses, including groundbreaking research on seismic isolation and fiber-reinforced concrete. Dr. Nabavian’s dedication to teaching is reflected in his students’ academic success and his recognition as an exemplary educator.

🛠️ Technical Skills and Software Expertise

Dr. Nabavian possesses an extensive skill set in structural analysis and engineering software, including proficiency in ARTeMIS, AutoCAD, ETABS, and MATLAB. His technical acumen is complemented by advanced knowledge of signal processing, noise reduction techniques, and data analysis, which have been applied to improve the accuracy and efficiency of output-only structural identification methods.

Top Noted Publications

Output-only modal analysis of a beam via frequency domain decomposition method using noisy data
  • Authors: S Mostafavian, SR Nabavian, MR Davoodi, B Navayi Neya
    Journal: International Journal of Engineering
    Year: 2019
Influence of nano-silica particles on fracture features of recycled aggregate concrete using boundary effect method: Experiments and prediction models
  • Authors: SR Nabavian, H Fallahnejad, A Gholampour
    Journal: Structural Concrete
    Year: 2024
Damping estimation of a double-layer grid by output-only modal identification
  • Authors: SR Nabavian, MR Davoodi, B Navayi Neya, SA Mostafavian
    Journal: Scientia Iranica
    Year: 2021
Effect of noise on output-only structural identification of beams
  • Authors: SR Nabavian, MR Davoodi, B Navayi Neya, SA Mostafavian
    Journal: Journal of Structural and Construction Engineering
    Year: 2020
Fracture characteristics of recycled aggregate concrete using work-of-fracture and size effect methods: the effect of water to cement ratio
  • Authors: H Fallahnejad, SR Nabavian, A Gholampour
    Journal: Archives of Civil and Mechanical Engineering
    Year: 2024

 

 

 

Celal Kursun | Experimental methods | Best Researcher Award

Assoc Prof Dr. Celal Kursun | Experimental methods | Best Researcher Award

Head of Materials Science and Engineering at Kahramanmaras Sutcu Imam University, Turkey

Dr. Celal Kurşun is an Associate Professor at Kahramanmaraş Sütçü İmam University, specializing in Materials Science and Engineering. He completed his postdoctoral research at the University of Wisconsin-Madison and has a strong background in the synthesis and characterization of advanced materials, including magnesium-based alloys and metallic glasses. Dr. Kurşun has held various academic positions, including Assistant Professor and Research Specialist, and has supervised numerous graduate theses.

🎓Profile

Early Academic Pursuits 📚

Dr. Celal Kurşun’s academic journey is a testament to his dedication to materials science and engineering, with a particular focus on advanced alloys, structural properties, and energy applications. His academic path began with a Bachelor’s degree in 2009, followed by a Master’s degree in 2012, where he investigated the structural and thermal properties of copper-based alloys. These early pursuits laid the foundation for his more extensive doctoral research, where he completed not one but two PhD theses. The first, completed in 2015, focused on the structural, thermal, and mechanical properties of Cu-based nanocrystalline alloys, while the second (2018) shifted focus to magnesium-based amorphous and nanocrystalline alloys, particularly their mechanical and hydrogen storage capacities. This early academic pursuit of diverse materials’ properties set the stage for his later contributions to high-impact research areas such as energy storage, radiation shielding, and alloy design.

Professional Endeavors & Postdoctoral Research 🔬

Dr. Kurşun’s professional career is distinguished by both teaching and high-level research. After earning his PhD, he undertook a postdoctoral position at the prestigious University of Wisconsin-Madison (2018-2020) within the Materials Science and Engineering Department. Here, his research concentrated on the design, synthesis, and characterization of advanced magnesium-based bulk metallic glass alloys for hydrogen storage and energy applications. This period not only sharpened his research skills but also allowed him to engage in cutting-edge projects with significant implications for sustainable energy technologies. His postdoctoral work solidified his reputation as a leading figure in the study of energy-efficient materials.

Contributions and Research Focus ⚙️

Dr. Kurşun’s research focuses on advanced materials, particularly nanostructured and metallic glass alloys. His work addresses critical challenges in energy storage, with a focus on hydrogen storage in magnesium-based alloys, which holds promise for clean energy applications. Additionally, his research on radiation shielding materials, such as boron-doped titanium alloys and Al-Gd2O3 composites, contributes to industries requiring advanced protective materials against neutron and gamma radiation, such as nuclear energy and space exploration.

Impact and Influence 🌍

Dr. Kurşun’s research has not only advanced academic knowledge but has also had significant real-world applications. His groundbreaking work on magnesium-based alloys for hydrogen storage and his innovative approaches to improving radiation shielding materials have placed him at the forefront of energy and environmental research. Furthermore, his academic leadership has had a broad impact through the mentorship of numerous graduate students, many of whom have gone on to pursue successful careers in materials science and engineering. His recognition within international scientific organizations such as the American Physical Society and The Minerals, Metals & Materials Society underscores his influence on the global materials science community.

Academic Citations 📑

Dr. Kurşun’s work has been consistently recognized and cited in leading international journals, including Journal of Materials Science: Materials in Electronics, Ceramics International, and HELIYON. His research on the structural and mechanical properties of alloys, radiation shielding, and catalytic processes is frequently cited by researchers working in similar domains, contributing to the development of novel materials and technologies. His citation record reflects the impact his work has had on advancing knowledge and innovation in materials science, energy storage, and environmental sustainability.

Technical Skills 🛠️

Dr. Kurşun possesses an extensive skill set, combining advanced experimental techniques with theoretical modeling. His technical expertise includes the design, synthesis, and characterization of amorphous and nanocrystalline alloys, as well as mechanical testing, neutron and gamma radiation shielding, and the study of thermal properties of materials. His familiarity with techniques such as arc melting, mechanical alloying, and the use of various characterization tools (e.g., X-ray diffraction, scanning electron microscopy) allows him to address complex challenges in materials science.

Teaching Experience 🍎

Throughout his career, Dr. Kurşun has demonstrated a strong commitment to teaching and mentoring students. As an Associate Professor, he has designed and taught various courses in materials science, solid-state physics, and engineering, preparing the next generation of scientists and engineers. His approach to teaching emphasizes not only the theoretical foundations of materials science but also practical, hands-on experiences that prepare students for real-world challenges. In addition to his classroom duties, Dr. Kurşun has supervised a number of graduate and undergraduate theses, helping students pursue their research interests and develop critical thinking and analytical skills.

Legacy and Future Contributions 🔮

Dr. Kurşun’s legacy is already being shaped by his continued research and mentorship, with his influence extending to both the scientific community and the educational sector. Looking ahead, Dr. Kurşun aims to deepen his work on sustainable materials for energy applications, particularly in developing alloys that can address the global demand for clean energy solutions. His research trajectory also hints at greater interdisciplinary work, exploring areas where materials science meets environmental sustainability, energy storage, and the circular economy.

Publication Top Notes📖

Structure, mechanical, and neutron radiation shielding characteristics of mechanically milled nanostructured (100-x)Al-xGd2O3 metal composites
  • Authors: Celal Kursun, Meng Gao, Ali Orkun Yalcin, Khursheed A. Parrey, Yasin Gaylan
    Journal: Ceramics International
    Year: 2024
Unraveling structural relaxation induced ductile-to-brittle transition from perspective of shear band nucleation kinetics in metallic glass
  • Authors: Meng Gao, Celal Kursun, John H. Perepezko
    Journal: Journal of Alloys and Compounds
    Year: 2023
Synthesis and mechanical properties of (Ni70Si30)100−x Fe x (x = 0, 5, 10) alloys
  • Authors: Celal Kursun, Ahmet Muslim Aksoy
    Journal: Emerging Materials Research
    Year: 2019
Mechanical properties, microstructural and thermal evolution of Mg65Ni20Y15−xSix (X = 1, 2, 3) alloys by mechanical alloying
  • Authors: Celal Kursun, Musa Gogebakan, Hasan Eskalen
    Journal: Materials Research Express
    Year: 2018
The Effect of Milling Time on the Synthesis of Cu54Mg22Ti18Ni6 Alloy
  • Authors: Celal Kursun, Musa Gogebakan
    Journal: 9th International Physics Conference of the Balkan Physical Union (Bpu-9)
    Year: 2016