Christen Tharwat | Experimental methods | Best Researcher Award

Dr. Christen Tharwat | Experimental methods | Best Researcher Award

Researcher at National Research Centre | Egypt

Christen Tharwat is a Postdoctoral Researcher specializing in plasmonic gas sensors, graphene-based sensors, and nanotechnology for biomedical applications. With a strong academic foundation from Cairo University, he has made notable contributions in nanoparticle synthesis and environmental applications. He is recognized for his work on magnetic nanoparticles and their uses in areas such as wastewater treatment and biomedical applications. Tharwat is also actively involved in academic writing, proofreading, and manuscript submissions, further enhancing his impact in the scientific community.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 🎓

Christen Tharwat’s academic journey began at Cairo University, where he obtained a Bachelor’s degree in Physics & Chemistry in 2010, followed by a Master of Science in Physics in 2014. His master’s research was centered on laser treatment of Ti-Ni alloys coated with hydroxyapatite/silver nanoparticles for biomedical applications. Tharwat then pursued a PhD in Physics at the National Institute of Laser Enhanced Sciences, Cairo University, focusing on the construction of optical sensors for environmental applications. His early academic work laid the groundwork for his extensive research in nanotechnology.

Professional Endeavors 💼

Tharwat’s professional career spans both research and teaching. As a Postdoctoral Fellow, he is engaged in cutting-edge work on plasmic gas sensors and graphene-based sensors, contributing significantly to the sensor technology field. His research at the National Research Centre, Egypt, and the American University in Cairo has equipped him with diverse expertise in nanomaterial synthesis and their industrial applications. Furthermore, his freelance academic writing and proofreading have helped him hone his skills in articulating complex scientific ideas for academic audiences.

Contributions and Research Focus 🔬

Tharwat’s research has been pivotal in advancing nanotechnology across various domains. His work on magnetic nanoparticles and their size dependence for biomedical applications has practical implications for drug delivery and bioimaging. Additionally, his work on nanoparticles for wastewater treatment demonstrates his commitment to environmental sustainability. His laser treatment techniques for biomedical alloys further underscore his contributions to improving healthcare technologies. Tharwat’s focus on graphene and plasmic gas sensors indicates his strong involvement in future-oriented research that addresses environmental and industrial challenges.

Impact and Influence 🌍

Tharwat has had a substantial impact on both the academic and industrial sectors. His work on magnetic nano-crystals for bioimaging has expanded the potential for more effective medical diagnostics, while his contributions to wastewater treatment provide practical solutions to environmental pollution. The development of optical sensors for environmental monitoring has contributed to better understanding and control of environmental hazards. Furthermore, his international collaborations with institutions like the Université de Picardie Jules Verne, France, have enhanced the global applicability of his research.

Academic Citations and Research Skills 📚

Tharwat has authored numerous peer-reviewed journal papers and presented his findings at international conferences. His publications include studies on magnetic nanoparticles, nanoflowers for dye removal, and silicon-based nanostructures. His research in nanomaterials and nanostructures has been cited across multiple disciplines, highlighting the versatility and impact of his work. Additionally, his proficiency in synthesizing nanoparticles, sensor fabrication, and surface modifications speaks to his technical expertise and innovation in experimental methods.

Teaching Experience 🧑‍🏫

Tharwat’s academic career also includes a strong teaching role, where he has trained and mentored undergraduate students in Solid State Physics at institutions like the American University in Cairo. His work in academic mentoring and research assistance has influenced the next generation of scientists, guiding students through complex lab equipment and research techniques. Tharwat’s ability to explain cutting-edge concepts in nanotechnology and sensor development makes him a valuable educator.

Awards and Honors 🏅

Tharwat has received recognition for his work in both academic research and innovation. He is the co-holder of international patents in nanotechnology, including one for nanoalloys for wastewater treatment and another for coated magnetic nano-crystals for bioimaging. His contributions to the field of nanomaterials have led to multiple conference papers and journal publications, earning him a prominent place among young researchers in nanotechnology and material science.

Legacy and Future Contributions 🔮

Christen Tharwat’s research legacy will likely be marked by his advancements in sensor technologies and his contributions to environmental sustainability and biomedical applications. As his work in graphene-based sensors and nanomaterial synthesis continues to evolve, he is well-positioned to shape future research in these critical areas. Moving forward, his ongoing postdoctoral work will likely focus on next-generation sensor devices and environmental monitoring systems, ensuring that his research continues to have a lasting impact on both scientific and industrial landscapes. His vision for the future includes collaborative research that bridges nanotechnology with environmental and healthcare solutions.

Publications Top Notes

Photo-degradation of water and food pathogens using cheap handheld laser

  • Authors: S Mohamed, C Tharwat, A Khalifa, Y Elbagoury, H Refaat, SF Ahmed, …
    Journal: High-Power Laser Materials Processing: Applications, Diagnostics, and …
    Year: 2025

Single step MACE for SiNWs fabrication with (Au & Ag) metals

  • Authors: A Khalifa, AAM Ahmed, C Tharwat, M El Koddosy, MA Swillam
    Journal: Nanoscale and Quantum Materials: From Synthesis and Laser Processing to …
    Year: 2025

Effect of ZnO/EAF slag doping on removal of methyl red dye (MR) from industrial waste water

  • Authors: C Tharwat, D. A. Wissa, Nadia F. Youssef
    Journal: Scientific Reports
    Year: 2024

Fabrication of crystalline silicon nanowires coated with graphene from graphene oxide on amorphous silicon substrate using excimer laser

  • Authors: MAS C Aziz, MA Othman, A Amer, ARM Ghanim
    Journal: Heliyon
    Year: 2024

CW laser beam-based reduction of graphene oxide films for gas sensing applications

  • Authors: C Tharwat, Y Badr, SM Ahmed, IK Bishay, MA Swillam
    Journal: Optical and Quantum Electronics
    Year: 2024

 

 

Samira Mansouri Majd | Sensor | Member

Dr. Samira Mansouri Majd | Sensor | Member

PHD at Analytical Chemistry Kurdistan University, Iran

Samira Mansouri Majd is a distinguished analytical chemist hailing from Iran. With an illustrious academic journey, she graduated as the top student in her B.Sc, M.Sc, and Ph.D. Her expertise spans electrochemistry, spectroscopy, and nanotechnology. Samira’s research interests include solar cells, biosensors, and electrochemical synthesis methods. She has contributed significantly to academia, serving as a laboratory instructor and head of the Nanotechnology Society at Kurdistan University. As a reviewer for esteemed journals, she continues to make impactful strides in her field. Samira’s dedication to excellence and innovation marks her as a leading figure in analytical chemistry and nanotechnology.

Professional Profiles:

Education

Diploma in Experimental Science Golshan High School, Kermanshah, Iran Graduated in 2005 Average Score: 19.77/20, Rank: 1/27 B.Sc in Applied Chemistry Kurdistan University, Sanandaj, Iran Graduated in 2009 Average Score: 17.65/20, Rank: 1/28 Project: Basic steps of QSAR/QSPR investigations M.Sc in Analytical Chemistry Kurdistan University, Sanandaj, Iran Graduated in 2012 Average Score: 18.97/20, Rank: 1/10 Thesis: Fabrication of electrochemical Theophylline (TP) sensor... Ph.D in Analytical Chemistry Kurdistan University, Sanandaj, Iran Graduated in 2018 Average Score: 19.76/20, Rank: 1/5 Thesis: Field-effect transistor electrochemical sensors… Postdoc in Analytical Chemistry Razi University, Kermanshah, Iran (2019-2021) Kurdistan University, Sanandaj, Iran (2021-now) Research Focus: Field effect transistor electrochemical sensors and biosensors, Photoelectrochemical sensors and biosensors

Teaching Experience

General chemistry and Analytical chemistry laboratory at the University of Kurdistan, various years. Olympiad of Chemistry, University of Kurdistan, 2014. General chemistry courses, University of Kurdistan, 2021-2022.

Awards

Top student (1/28) in B.Sc. Top student (1/10) in M.Sc. Top student (1/5) in PhD. Best student award, University of Kurdistan, 2007-2008. Best student award in chemistry in Iran, 2018.

Research Interests

Solar cells. Lateral flow strips (rapid tests). Field Effect Transistors (FETs) and their applications in sensors and biosensors. Fabrication of nano and bio electrochemical sensors for study and determination of medicinal and biological compounds. Electrocatalytic methods for determination of biological and pharmaceutical compounds. Electrochemical synthesis methods for preparation of biological and pharmaceutical compounds. Design and manufacture of batteries and supercapacitors. Design and manufacture of portable smart-phones sensor and biosensors.

Instrumental Skills

Proficient in various electrochemistry techniques, electrochemical impedance spectroscopy, and optical spectroscopy techniques

Research Focus:

Samira Mansouri Majd has made significant contributions to the field of analytical chemistry and biosensors, particularly in the development of ultrasensitive detection methods for cancer markers. Her research focuses on the fabrication and optimization of field-effect transistor (FET)-based aptasensors and biosensors. She has pioneered innovative techniques using nanomaterials such as multi-walled carbon nanotubes, graphene, and metal oxides to enhance sensor performance. Majd’s work demonstrates a commitment to advancing early cancer detection through label-free and highly sensitive detection platforms. Her expertise lies at the intersection of nanotechnology, electrochemistry, and biomedical engineering, driving forward the frontier of biosensing technologies for improved healthcare diagnostics.

Publications

  1. Microfluidic electrolyte-gated TiS3 nanoribbons-based field-effect transistor as ultrasensitive label-free immunosensor for prostate cancer marker analysis, Publication: 2024.
  2. Highly sensitive and selective detection of the pancreatic cancer biomarker CA 19-9 with the electrolyte-gated MoS 2-based field-effect transistor immunosensor, Publication: 2023.
  3. Ultrasensitive immunosensor for monitoring of CA 19-9 pancreatic cancer marker using electrolyte-gated TiS3 nanoribbons field-effect transistorPublication: 2023.
  4. Design of a novel aptamer/molecularly imprinted polymer hybrid modified Ag–Au@ Insulin nanoclusters/Au-gate-based MoS2 nanosheet field-effect transistor for attomolar detection, Publication: 2023.
  5. Transport Properties of a Molybdenum Disulfide and Carbon Dot Nanohybrid Transistor and Its Applications as a Hg2+ Aptasensor, Publication: 2020.
  6. The development of radio frequency magnetron sputtered p-type nickel oxide thin film field-effect transistor device combined with nucleic acid probe for ultrasensitive label, Publication: 2018.
  7. Ultrasensitive flexible FET-type aptasensor for CA 125 cancer marker detection based on carboxylated multiwalled carbon nanotubes immobilized onto reduced graphene oxide film, Publication: 2018.
  8. An ultrasensitive detection of miRNA-155 in breast cancer via direct hybridization assay using two-dimensional molybdenum disulfide field-effect transistor biosensorPublication: 2018.
  9. Label-free attomolar detection of lactate based on radio frequency sputtered of nickel oxide thin film field effect transistor, Publication: 2017.
  10. Manganese oxide nanoparticles/reduced graphene oxide as novel electrochemical platform for immobilization of FAD and its application as highly sensitive persulfate sensor, Publication: 2016.
.