Varun Kumar Singh | Experimental methods | Best Researcher Award

Mr. Varun Kumar Singh | Experimental methods | Best Researcher Award

Madan Mohan Malaviya University of Technology, Gorakhpur | India

Varun Kumar Singh is a dedicated Ph.D. candidate at Madan Mohan Malaviya University of Technology, Gorakhpur, where he is advancing his research in Energy Technology and Management. He has an impressive academic track record, having completed his M.Tech in Energy Technology and Management with an 8.09 CGPA. Prior to his graduate studies, he obtained his B.Tech in Mechanical Engineering from MJP Rohilkhand University, Bareilly. His academic pursuits reflect his passion for renewable energy systems and sustainable technologies.

👨‍🎓Profile

Google scholar

Scopus

Orcid

Early Academic Pursuits 📚

Varun Kumar Singh’s academic journey began at M.G. Inter College, Gorakhpur, where he excelled in both High School (71%) and Intermediate (78.2%) exams, establishing a strong foundation for his future studies. His curiosity for mechanical engineering led him to pursue a B.Tech in Mechanical Engineering from MJP Rohilkhand University, Bareilly. Motivated by the potential of sustainable energy solutions, he later advanced his studies with a M.Tech and is currently in the process of earning his Ph.D..

Professional Endeavors 💼

Varun’s professional growth includes valuable summer training in CATIA and workshop processes at the Central Tool Room and Training Centre, Bhubaneswar. Additionally, he gained practical exposure during an industrial training at Parbati H.E. Project Stage-II, NHPC Limited. These professional experiences have enhanced his ability to apply theoretical knowledge to real-world energy systems, particularly in energy storage and thermal management.

Contributions and Research Focus 🔬

Varun Kumar Singh’s research is centered on nano-enhanced Phase Change Materials (PCMs) for solar desalination and thermal energy storage systems. His publications, including in prestigious journals like Materials Today Sustainability and Heat Transfer, focus on the thermo-economic performance of solar distillation systems. He explores the role of nano-additives like TiO2 and CuO in enhancing thermal storage materials for renewable energy solutions, aiming to improve efficiency in energy storage and thermal management.

Impact and Influence 🌍

Varun’s contributions have made significant strides in sustainable energy research. His studies have had a measurable impact on enhancing the performance of solar energy systems, which is critical for promoting green technologies and combating climate change. By working on nano-enhanced energy storage solutions, he is contributing to the global shift towards more sustainable and efficient energy resources. His research influences both academia and industry, with a focus on practical applications in real-world energy systems.

Research Skills 🔧

Varun has developed advanced research skills in the areas of thermo-economic analysis, solar thermal systems, and energy storage materials. He is proficient in experimental setups, simulation tools, and analytical techniques, allowing him to evaluate nano-enhanced PCMs and their thermal properties. His expertise in solar energy systems and thermal storage positions him as an expert in the field of renewable energy research.

Legacy and Future Contributions 🌱

Varun’s legacy lies in his ongoing commitment to improving energy storage and solar technologies. As a Ph.D. candidate, his future contributions are expected to drive innovations in renewable energy solutions, with a particular focus on energy-efficient systems. His work on nano-enhanced PCMs and solar desalination will likely lead to advancements in energy sustainability, ensuring that his impact on the field of energy management continues to grow.

Publications Top Notes

Multi-objective optimization of novel phase change material-based desalination system using genetic algorithms

  • Authors: Singh, V.K., Kumar, D., Tripathi, R.J.
    Journal: Journal of Energy Storage
    Year: 2024

Heat transfer analysis of solar distillation system by incorporating nano-enhanced PCM as thermal energy-storage system

  • Authors: Singh, V.K., Kumar, D.
    Journal: Heat Transfer
    Year: 2024

Development, characterization and thermo-physical analysis of energy storage material doped with TiO2 and CuO nano-additives

  • Authors: Singh, V.K., Kumar, D.
    Journal: Journal of the Indian Chemical Society
    Year: 2024

An experimental investigation and thermo-economic performance analysis of solar desalination system by using nano-enhanced PCM

  • Authors: Singh, V.K., Kumar, D.
    Journal: Materials Today Sustainability
    Year: 2024

Experimental Analysis of the Performance of Indirect Evaporative Cooling System with Water and Nano-fluid

  • Authors: Kumar, A., Kumar, D., Tripathi, R.J., Singh, V.K., Kumar, P.
    Journal: NanoWorld Journal
    Year: 2023

 

 

Parveen A | Experimental methods | Best Researcher Award

Dr. Parveen A | Experimental methods | Best Researcher Award

AVS College of Arts & Science, Salem | India

Dr. A. Parveen is a passionate physicist and educator with a Ph.D. in Physics from Periyar University, India. Her research primarily focuses on nanomaterials, vibrational studies, and spectroscopy. With over 8 years of experience in academia, she is dedicated to advancing the field of environmental applications through photocatalysis and nanocomposites. Dr. Parveen combines her strong academic background with extensive teaching and research contributions, earning recognition for her work in material science.

👨‍🎓Profile

Google scholar

Scopus

Early Academic Pursuits 🎓

Dr. Parveen’s academic journey began at Sri Sarada College for Women, Salem, where she completed her B.Sc., M.Sc., and M.Phil. in Physics, all with distinction. Her deep interest in material science and physics led her to pursue a Ph.D. from Government Arts College, Salem, under Periyar University. The focus of her Ph.D. thesis was on the synthesis of metal oxide nanoparticles and their applications as visible light-active photocatalysts for environmental applications.

Professional Endeavors 🏢

Dr. Parveen currently holds the position of Assistant Professor at AVS College of Arts & Science, Salem, where she imparts knowledge to undergraduate and postgraduate students. She has previously served as an Assistant Professor at Shri Sakthikailassh Women’s College and Salem Polytechnic College. Her teaching expertise spans across multiple areas in physics, including nano materials, spectroscopy, and environmental science. Dr. Parveen is committed to mentoring students and fostering their passion for research and scientific inquiry.

Contributions and Research Focus 🔬

Dr. Parveen’s research is centered around nanomaterials, their synthesis, characterization, and applications in photocatalysis for environmental remediation. Some of her major works include:

  • V2O5/Ppy composites for hydrogen evolution and organic pollutant degradation.
  • MnO2/PPy hybrid catalysts designed for visible light photocatalytic activity.
  • ZrO2-based catalysts coupled with PPy to enhance photocatalytic performance.

These contributions have significantly advanced the field of material science, with applications in renewable energy and environmental sustainability.

Academic Cites 📑

Her research is gaining significant recognition, with several of her articles cited by peers in the scientific community. This reflects the growing influence of her work in the field of nanomaterials and photocatalysis. Dr. Parveen’s ability to contribute novel solutions to environmental challenges through innovative material designs has made her a promising figure in sustainable energy research.

Research Skills ⚙️

Dr. Parveen is proficient in nanomaterial synthesis, characterization techniques such as spectroscopy, and vibrational studies. She has hands-on experience with a range of material characterization techniques and works with complex computational models in density functional theory (DFT). Her research skills also extend to the evaluation of photocatalytic performance in various systems, positioning her as an expert in this area.

Teaching Experience 🎓

With over 8 years of teaching experience, Dr. Parveen has honed her skills in delivering quality education. She has taught at prominent institutions and has participated in various workshops and seminars to further enhance her pedagogical approaches. Her expertise in nanomaterials and spectroscopy is shared with students in both undergraduate and postgraduate programs.

Legacy and Future Contributions 🌟

Dr. Parveen’s work has the potential to lead to significant breakthroughs in the development of environmentally friendly energy solutions. Her photonics research on visible light photocatalysis and nanocomposites could pave the way for sustainable technology in the future. Through continuous research, teaching, and mentorship, Dr. Parveen is well-positioned to make lasting contributions to both science and education in the years to come.

Publications Top Notes

A dual-purpose photocatalytic reaction for hydrogen evolution and simultaneous organic pollutant degradation of V2O5/Ppy based composite photocatalyst

  • Authors: Parveen, A., Surumbarkuzhali, N., Meeran, M.N., BoopathiRaja, R., Parthibavarman, M.
    Journal: Chemical Physics Impact
    Year: 2024

Design of SnO2 nanorods/polypyrrole nanocomposite photocatalysts for photocatalytic activity towards various organic pollutants under the visible light irradiation

  • Authors: Parveen, A., Surumbarkuzhali, N., Shkir, M., Ahn, C.-H., Park, S.-H.
    Journal: Inorganic Chemistry Communications
    Year: 2022

Spatial separation of photo-generated carriers and enhanced photocatalytic performance on ZrO2 catalysts via coupling with PPy

  • Authors: Parveen, A., Surumbarkuzhali, N.
    Journal: Inorganic Chemistry Communications
    Year: 2020

Strategies and insights towards the high performance visible light photocatalytic activity of MnO2/PPy hybrid catalysts: challenges and perspectives

  • Authors: Parveen, A., Surumbarkuzhali, N.
    Journal: Journal of Materials Science: Materials in Electronics
    Year: 2020

 

 

Jiawei Wang | Experimental methods | Best Researcher Award

Mr. Jiawei Wang | Experimental methods | Best Researcher Award

College of Information Engineering, China Jiliang University | China

Dr. Jiawei Wang is an accomplished academic in Condensed Matter Physics, with a Ph.D. from Tsinghua University and extensive experience in research, teaching, and leadership roles in China and abroad. His work focuses on magnetic materials, multiferroic films, and quantum physics, with notable achievements in scholarship awards, conference presentations, and research grants. His career exemplifies dedication to advancing knowledge and nurturing future scientists.

👨‍🎓 Profile

Scopus

Orcid

🎓Early Academic Pursuits

Dr. Wang’s academic journey began at Lanzhou University, where he received his B.S. in Physics. His outstanding academic performance earned him multiple university scholarships, and he was recognized as an Outstanding Graduate in 2007. He continued his education at Tsinghua University, one of the premier institutions for physics in China, where he earned his Ph.D. in Condensed Matter Physics. His dissertation, conducted under the guidance of top experts in the field, focused on the magnetic properties of low-dimensional materials, setting the stage for his future research.

💼Professional Endeavors

Dr. Wang’s professional career has spanned various prestigious institutions. He has held faculty positions at Zhejiang University of Technology and currently serves as a faculty member at China Jiliang University. His roles have ranged from instructing undergraduates in foundational physics courses, particularly electromagnetism, to supervising graduate students and research projects. Dr. Wang has also collaborated internationally, notably as a Visiting Scholar at Northeastern University, where he conducted pioneering research on new magnetic materials. He has also been an active research manager, overseeing programs funded by national science foundations.

🔬Contributions and Research Focus

Dr. Wang’s research contributions have focused on magnetic materials, specifically developing multiferroic hexagonal RMnO3 films with unique magnetic properties, including high magnetostriction and perpendicular magnetic anisotropy. His work in this area aims to develop materials for advanced electronics, data storage, and sensing technologies. He has been a principal investigator for several funded projects such as those supported by the National Natural Science Foundation of China and the Zhejiang Natural Science Foundation. Through his research, Dr. Wang is advancing the field of condensed matter physics, exploring novel materials with real-world applications in energy and technology.

🧠Research Skills

Dr. Wang’s research skills are exemplified through his leadership in magnetic materials research and his ability to manage complex scientific programs. His expertise includes material fabrication, characterization techniques, and the development of multiferroic materials. His focus on developing high-performance materials, such as those with high magnetostriction coefficients and perpendicular magnetic anisotropy, showcases his innovative approach to solving practical problems in material science. Dr. Wang has a deep understanding of theoretical and experimental physics, which he combines to push the boundaries of his field.

👨‍🏫Teaching Experience

Dr. Wang has been a dedicated educator, teaching a wide array of courses in physics, including electromagnetic fields, mathematical physics methods, and laboratory physics. He has taught students at both the undergraduate and graduate levels, guiding them through fundamental principles and advanced concepts. Dr. Wang also plays a significant role in mentoring graduate students and young researchers, preparing them for careers in both academia and industry. His experience as a teaching assistant at Tsinghua University early in his career laid the foundation for his effective teaching methodology and commitment to student development.

🔮Legacy and Future Contributions

Dr. Wang’s legacy in the field of condensed matter physics is still unfolding, but his research on multiferroic materials and magnetic materials is poised to have a long-lasting impact. His ability to secure national funding and lead multi-year projects speaks to his leadership skills and his potential to shape future innovations in material science. Going forward, Dr. Wang will likely continue making groundbreaking contributions to the magnetism and material science fields. Additionally, as he expands his publication record and engages more deeply with interdisciplinary research, his influence is set to grow, inspiring future generations of physicists and material scientists.

Publications Top Notes