Xiaolong Zhao | Experimental methods | Best Researcher Award

Assoc. Prof. Dr. Xiaolong Zhao | Experimental methods | Best Researcher Award

Xi’an jiaotong university | China

Dr. Xiaolong Zhao is an Associate Professor at Xi’an Jiaotong University in the School of Microelectronics, Faculty of Electronic and Information Engineering. He is a highly regarded researcher in the field of semiconductor radiation detectors, microwave components, and FDTD simulation. With a solid educational background from Xi’an Jiaotong University, Dr. Zhao has made notable strides in the development of advanced detector systems and simulation models. His multifaceted research continues to shape the future of semiconductor technologies.

👨‍🎓Profile

Scopus

Orcid

Early Academic Pursuits 🎓

Dr. Zhao’s journey began at Xi’an Jiaotong University, where he earned his Bachelor’s degree in Microelectronics in 2012, followed by a PhD in Electronic Science and Technology in 2017. During his academic years, he developed a keen interest in the field of semiconductor devices, leading to his work on radiation detection systems. His early research laid a strong foundation for his subsequent postdoctoral work, which further solidified his expertise in advanced semiconductor technologies and microwave engineering.

Professional Endeavors 🛠️

Dr. Zhao’s professional career is characterized by his contributions to both academic research and industry. After completing his PhD, he undertook a Postdoctoral Fellowship at Xi’an Jiaotong University from 2018 to 2024, enhancing his expertise in radiation detectors and microwave simulations. Additionally, his industrial experience as a Hardware Engineer at Huawei Technologies between 2017 and 2018 provided him with valuable insights into practical applications of his research in the tech industry.

Contributions and Research Focus 🔬

Dr. Zhao’s research focuses primarily on semiconductor radiation detectors and the nonlinear effects in microwave components. His work on FDTD simulation for the analysis of microwave circuits and radiation sensors has significantly advanced the understanding and design of next-generation detection systems. His research on ZnO-based X-ray detectors, ultraviolet phototransistors, and bulk-acoustic-wave resonators demonstrates his profound contribution to innovative materials and sensing technologies.

Academic Cites 📚

Dr. Zhao’s work is well-recognized in the scientific community. With 18 peer-reviewed publications (including multiple first-author and corresponding author papers), he has consistently contributed high-impact research that has garnered substantial academic attention. For instance, his paper on “Physical Sensors Based on Lamb Wave Resonators” published in Micromachines and his research on ZnO-based X-ray detectors published in Nuclear Instruments and Methods are widely cited and respected in the fields of semiconductor science and detection technology.

Research Skills 🧠

Dr. Zhao possesses a range of specialized research skills including:

  • Semiconductor Device Design
  • FDTD Simulation Techniques
  • Microwave Engineering
  • Material Science (ZnO, 4H-SiC)
  • Radiation Detection Technologies

These skills have allowed him to make innovative contributions to both theoretical studies and applied research in semiconductor devices and sensor systems. His expertise in nonlinear effects and advanced simulations further sets him apart as a leader in his field.

Teaching Experience 🎓

As an Associate Professor, Dr. Zhao is dedicated to the development of the next generation of microelectronics engineers. His teaching responsibilities at Xi’an Jiaotong University include courses on semiconductor physics, microwave engineering, and radiation detection technologies. He combines his industry experience and research expertise to offer students a rich and practical understanding of electronic engineering and materials science.

Awards and Honors 🏆

Dr. Zhao’s exceptional work has earned him several prestigious research grants, including:

  • National Science Foundation of China (2023-2026)
  • Research Project of Shanghai Aerospace Electronics Equipment Institute (2023)
  • Research Project of Honor Device Co. Ltd. (2021)

Additionally, his innovative contributions to semiconductor and radiation detection technologies have been recognized by his peers in the research community, making him a notable figure in microwave engineering and sensor development.

Legacy and Future Contributions 🌱

Dr. Zhao’s legacy is already well-established through his high-impact research and teaching. As a forward-thinking researcher, his work promises to shape the future of radiation detection systems, microwave technologies, and semiconductor devices for years to come. Looking ahead, Dr. Zhao plans to continue his exploration of new materials and sensor technologies, and he is dedicated to further expanding the applications of his work in sectors such as aerospace, medical diagnostics, and environmental monitoring.

Publications Top Notes

Real-Time Ultraviolet Flame Detection System Based on 4H-SiC Phototransistor

  • Authors: Danyang Huang, Xiaolong Zhao, Quan Li, Zhaozhao Liang, Shuwen Guo, Yongning He
    Journal: IEEE Transactions on Electron Devices
    Year: 2024

Readout circuit for a ZnO bulk-acoustic-wave X-ray dose rate detector

  • Authors: Zixia Yu, Junyan Bi, Danyang Huang, Xiaolong Zhao, Yongning He
    Journal: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
    Year: 2024-10

Physical Sensors Based on Lamb Wave Resonators

  • Authors: Zixia Yu, Yongqing Yue, Zhaozhao Liang, Xiaolong Zhao, Fangpei Li, Wenbo Peng, Quanzhe Zhu, Yongning He
    Journal: Micromachines
    Year: 2024-10-09

Full-Wave Simulation of Contact-Nonlinearity-Induced Passive Intermodulation Using a Nonlinear Interface Boundary Model

  • Authors: Xiaolong Zhao, Yongning He, Anxue Zhang
    Journal: IEEE Microwave and Wireless Technology Letters
    Year: 2024-06

Linearity–Nonlinearity-Separation FDTD Method for Nonlinearity Analysis of Passive Microstrip Circuits

  • Authors: Xiaolong Zhao, Yongning He, Anxue Zhang
    Journal: IEEE Microwave and Wireless Technology Letters
    Year: 2023

 

Celal Kursun | Experimental methods | Best Researcher Award

Assoc Prof Dr. Celal Kursun | Experimental methods | Best Researcher Award

Head of Materials Science and Engineering at Kahramanmaras Sutcu Imam University, Turkey

Dr. Celal Kurşun is an Associate Professor at Kahramanmaraş Sütçü İmam University, specializing in Materials Science and Engineering. He completed his postdoctoral research at the University of Wisconsin-Madison and has a strong background in the synthesis and characterization of advanced materials, including magnesium-based alloys and metallic glasses. Dr. Kurşun has held various academic positions, including Assistant Professor and Research Specialist, and has supervised numerous graduate theses.

🎓Profile

Early Academic Pursuits 📚

Dr. Celal Kurşun’s academic journey is a testament to his dedication to materials science and engineering, with a particular focus on advanced alloys, structural properties, and energy applications. His academic path began with a Bachelor’s degree in 2009, followed by a Master’s degree in 2012, where he investigated the structural and thermal properties of copper-based alloys. These early pursuits laid the foundation for his more extensive doctoral research, where he completed not one but two PhD theses. The first, completed in 2015, focused on the structural, thermal, and mechanical properties of Cu-based nanocrystalline alloys, while the second (2018) shifted focus to magnesium-based amorphous and nanocrystalline alloys, particularly their mechanical and hydrogen storage capacities. This early academic pursuit of diverse materials’ properties set the stage for his later contributions to high-impact research areas such as energy storage, radiation shielding, and alloy design.

Professional Endeavors & Postdoctoral Research 🔬

Dr. Kurşun’s professional career is distinguished by both teaching and high-level research. After earning his PhD, he undertook a postdoctoral position at the prestigious University of Wisconsin-Madison (2018-2020) within the Materials Science and Engineering Department. Here, his research concentrated on the design, synthesis, and characterization of advanced magnesium-based bulk metallic glass alloys for hydrogen storage and energy applications. This period not only sharpened his research skills but also allowed him to engage in cutting-edge projects with significant implications for sustainable energy technologies. His postdoctoral work solidified his reputation as a leading figure in the study of energy-efficient materials.

Contributions and Research Focus ⚙️

Dr. Kurşun’s research focuses on advanced materials, particularly nanostructured and metallic glass alloys. His work addresses critical challenges in energy storage, with a focus on hydrogen storage in magnesium-based alloys, which holds promise for clean energy applications. Additionally, his research on radiation shielding materials, such as boron-doped titanium alloys and Al-Gd2O3 composites, contributes to industries requiring advanced protective materials against neutron and gamma radiation, such as nuclear energy and space exploration.

Impact and Influence 🌍

Dr. Kurşun’s research has not only advanced academic knowledge but has also had significant real-world applications. His groundbreaking work on magnesium-based alloys for hydrogen storage and his innovative approaches to improving radiation shielding materials have placed him at the forefront of energy and environmental research. Furthermore, his academic leadership has had a broad impact through the mentorship of numerous graduate students, many of whom have gone on to pursue successful careers in materials science and engineering. His recognition within international scientific organizations such as the American Physical Society and The Minerals, Metals & Materials Society underscores his influence on the global materials science community.

Academic Citations 📑

Dr. Kurşun’s work has been consistently recognized and cited in leading international journals, including Journal of Materials Science: Materials in Electronics, Ceramics International, and HELIYON. His research on the structural and mechanical properties of alloys, radiation shielding, and catalytic processes is frequently cited by researchers working in similar domains, contributing to the development of novel materials and technologies. His citation record reflects the impact his work has had on advancing knowledge and innovation in materials science, energy storage, and environmental sustainability.

Technical Skills 🛠️

Dr. Kurşun possesses an extensive skill set, combining advanced experimental techniques with theoretical modeling. His technical expertise includes the design, synthesis, and characterization of amorphous and nanocrystalline alloys, as well as mechanical testing, neutron and gamma radiation shielding, and the study of thermal properties of materials. His familiarity with techniques such as arc melting, mechanical alloying, and the use of various characterization tools (e.g., X-ray diffraction, scanning electron microscopy) allows him to address complex challenges in materials science.

Teaching Experience 🍎

Throughout his career, Dr. Kurşun has demonstrated a strong commitment to teaching and mentoring students. As an Associate Professor, he has designed and taught various courses in materials science, solid-state physics, and engineering, preparing the next generation of scientists and engineers. His approach to teaching emphasizes not only the theoretical foundations of materials science but also practical, hands-on experiences that prepare students for real-world challenges. In addition to his classroom duties, Dr. Kurşun has supervised a number of graduate and undergraduate theses, helping students pursue their research interests and develop critical thinking and analytical skills.

Legacy and Future Contributions 🔮

Dr. Kurşun’s legacy is already being shaped by his continued research and mentorship, with his influence extending to both the scientific community and the educational sector. Looking ahead, Dr. Kurşun aims to deepen his work on sustainable materials for energy applications, particularly in developing alloys that can address the global demand for clean energy solutions. His research trajectory also hints at greater interdisciplinary work, exploring areas where materials science meets environmental sustainability, energy storage, and the circular economy.

Publication Top Notes📖

Structure, mechanical, and neutron radiation shielding characteristics of mechanically milled nanostructured (100-x)Al-xGd2O3 metal composites
  • Authors: Celal Kursun, Meng Gao, Ali Orkun Yalcin, Khursheed A. Parrey, Yasin Gaylan
    Journal: Ceramics International
    Year: 2024
Unraveling structural relaxation induced ductile-to-brittle transition from perspective of shear band nucleation kinetics in metallic glass
  • Authors: Meng Gao, Celal Kursun, John H. Perepezko
    Journal: Journal of Alloys and Compounds
    Year: 2023
Synthesis and mechanical properties of (Ni70Si30)100−x Fe x (x = 0, 5, 10) alloys
  • Authors: Celal Kursun, Ahmet Muslim Aksoy
    Journal: Emerging Materials Research
    Year: 2019
Mechanical properties, microstructural and thermal evolution of Mg65Ni20Y15−xSix (X = 1, 2, 3) alloys by mechanical alloying
  • Authors: Celal Kursun, Musa Gogebakan, Hasan Eskalen
    Journal: Materials Research Express
    Year: 2018
The Effect of Milling Time on the Synthesis of Cu54Mg22Ti18Ni6 Alloy
  • Authors: Celal Kursun, Musa Gogebakan
    Journal: 9th International Physics Conference of the Balkan Physical Union (Bpu-9)
    Year: 2016