Prashant Thakur | Experimental methods | Best Researcher Award

Assist. Prof. Dr. Prashant Thakur | Experimental methods | Best Researcher Award

Assistant Professor at Career Point University, Hamirpur | India

Dr. Prashant Thakur is an Assistant Professor in the Department of Physics and the Nodal Officer at the Center for Green Energy Research (CGER) at Career Point University, Hamirpur, Himachal Pradesh, India. He is ranked among the Top 0.5% of Researchers Worldwide (2024) by ScholarGPS®, California, US. His expertise lies in Materials Physics, particularly in superparamagnetic lanthanide-doped Mn-Zn ferrite nanoparticles. He has published 22 research articles and holds a patent titled “Superparamagnetic Nanoparticles and Method for Preparation Thereof”. Dr. Thakur has actively contributed to the development of environmentally sustainable technologies in the fields of nanomaterials and green energy.

👨‍🎓Profile

Google scholar

Scopus

ORCID

🎓Education

Dr. Thakur earned his Ph.D. in Materials Physics from Jaypee University of Information Technology, Solan in 2019. He also holds a B.Ed. in Teaching Science and Maths from HP University, Shimla (2014), an M.Sc. in Materials Physics from Shoolini University, Solan (2013), and a B.Sc. in Non-Medical from HP University, Shimla (2011). His education laid a strong foundation in physics and material sciences, preparing him for groundbreaking research in nanomaterials, magnetism, and energy solutions.

🏢Professional Experience

Dr. Thakur is currently serving as an Assistant Professor at Career Point University, Hamirpur. He previously worked as an Assistant Professor in the Department of Physics at Akal College of Basic Sciences, Eternal University (Feb 2019 – Feb 2021). He has also been a Teaching Assistant in the Department of Physics and Materials Science at Jaypee University of Information Technology, Solan, from Aug 2014 – Nov 2018. His academic roles have involved teaching materials physics and guiding research in nanomaterials, particularly superparamagnetic nanoparticles and magnetic ferrites.

🏆Awards and Honors

Dr. Thakur has been ranked among the Top 0.5% of Researchers Worldwide (2024) by ScholarGPS®, USA, a prestigious recognition. He has also received the Best Poster Presentation Award at a National Conference at Shoolini University (2013). Additionally, he has been honored as a Resource Person at the e-workshop on “Materials and their Characterization” at Maharaja Agrasen University, H.P. in 2021. Dr. Thakur’s work has earned him multiple accolades and has significantly contributed to the scientific community.

🧠Research Focus

Dr. Prashant Thakur’s research focuses on the synthesis and characterization of nanomaterials for applications in magnetic materials, environmental remediation, and energy storage. His key interests include superparamagnetic lanthanide-doped Mn-Zn ferrites and their potential in magnetic and electromagnetic applications. His work on bismuth-doped barium hexaferrites and green-synthesized nanoparticles for antimicrobial and photocatalytic applications demonstrates his dedication to sustainable technology. Dr. Thakur is also engaged in exploring green energy solutions to contribute to a cleaner environment.

🔬Research Skills

Dr. Thakur possesses a diverse set of research skills in nanomaterials synthesis, X-ray diffraction, magnetic characterization, and optical properties analysis. He is highly skilled in microwave sintering, sol-gel processes, and citrate sol-gel methods for the development of ferrites and nanoparticles. His expertise in structural and morphological analysis using tools like SEM, TEM, and XPS further enhances his ability to investigate the properties of advanced materials. He also possesses deep experience in electromagnetic shielding, photocatalysis, and environmental applications of nanomaterials, contributing significantly to sustainable material science.

Publications Top Notes

Efficient removal of toxic dyes from water using Mn3O4 nanoparticles: Synthesis, characterization, and adsorption mechanisms

  • Authors: Kamal Kishore, Jaswinder Kaur, Yasser B. Saddeek, Meenakshi Sharma, Manpreet Singh, Prashant Thakur, Dr. Yogesh Kumar Walia, Madan Lal, R. Suman, A.S. Reddy, et al.
    Journal: Journal of Molecular Structure
    Year: 2025

Green synthesized Fe‐doped ZnO NPs using aloe vera gel: Antimicrobial, structural, optical and magnetic properties

  • Authors: Shreya Chauhan, Prashant Thakur, Kamal Kishore, Madan Lal, Pankaj Sharma
    Journal: Journal of the American Ceramic Society
    Year: 2025

Optimized electromagnetic shielding properties using bismuth-doped barium hexaferrite nanoparticles

  • Authors: Neha Thakur, Indu Sharma, Prashant Thakur, Khalid Mujasam Batoo, Sagar E. Shirsath, Gagan Kumar
    Journal: Polyhedron
    Year: 2025

Enhanced photocatalytic and antimicrobial properties of nickel-doped barium M-type hexaferrites synthesized via citrate sol-gel method

  • Authors: Indu Sharma, Neha Thakur, Yasser A.M. Ismail, K.A. Aly, Pankaj Sharma, K.M. Batoo, Prashant Thakur
    Journal: Inorganic Chemistry Communications
    Year: 2024

Improved magneto-dielectric response and dielectric characteristics of rare earth doped Ba and Co based U-type hexaferrite

  • Authors: Indu Sharma, Sunil Sharma, Prashant Thakur, Sumit Bhardwaj, Munisha Mahajan, Shubhpreet Kaur, Gagan Anand, Rohit Jasrotia, A Dahshan, H.I. Elsaeedy, Pankaj Sharma, Gagan Kumar
    Journal: Materials Chemistry and Physics
    Year: 2024

Olfa Turki | Experimental methods | Best Researcher Award

Assist. Prof. Dr. Olfa Turki | Experimental methods | Best Researcher Award

Faculty of Sciences , Tunisia

Olfa Turki is an accomplished Assistant Professor at FST with a deep expertise in Physics, particularly in materials science and piezoelectric nanocomposites. With a PhD in Physics and a Master’s in Condensed Matter Physics, Olfa has built a robust academic career. She has contributed extensively to the development of lead-free ceramics and nanocomposites for sensor technologies. Olfa is also an active participant in international research projects and has presented her findings at numerous conferences worldwide. Beyond academics, she is committed to societal development, having been a candidate in municipal elections in Sfax in 2022. Her research bridges the gap between theoretical studies and practical applications in energy storage and sensors.

👨‍🎓Profile

Scopus

ORCID

🎓Education 

Olfa Turki holds a PhD in Physics from 2017, focusing on materials science, specifically piezoelectric nanocomposites. She completed her Master’s Degree in Condensed Matter Physics in 2013, which provided her with a strong foundation in solid-state physics. Her academic journey began with a Bachelor’s Degree in Physics in 2011, where she gained the knowledge that underpins her later research. Olfa’s educational background is complemented by her Baccalaureate in Mathematics from 2008, which further sharpened her analytical and problem-solving skills. Throughout her studies, Olfa has demonstrated a passion for scientific inquiry and a commitment to advancing knowledge in materials physics. Her academic qualifications are paired with hands-on experience in various scientific programs like Origin and Fullprof, enhancing her ability to analyze and present research data effectively. Olfa’s education continues to shape her innovative approach to solving complex scientific problems.

🏢Professional Experience 

Olfa Turki has accumulated a wealth of experience in teaching and research. She currently serves as an Assistant Professor at the Faculty of Sciences of Tunis (FST), where she teaches physics and conducts cutting-edge research. Olfa has also held contractual assistant positions at various institutions, including the Institute of Physics and Engineering (IPEIS) and the Institute of Information and Communication Technologies (ISGI), from 2015 to 2023. In these roles, she gained extensive experience in curriculum development, lecturing, and mentoring students. Olfa’s practical involvement in research is equally impressive, with significant contributions to projects on sensor autonomy and nanocomposite development. She has worked on national and international projects, collaborating with leading scientists in the field. Olfa has presented her work at various prestigious scientific conferences, both orally and in posters, solidifying her position as a respected researcher in her field.

🏆Awards and Honors

Olfa Turki has been recognized for her outstanding contributions to the field of material science and physics. While no formal awards are mentioned, her significant achievements in research, publications, and conference participation place her in high regard within the scientific community. Her work on piezoelectric nanocomposites and their application in sensor technologies has garnered attention, as evidenced by her numerous publications in high-impact journals such as Applied Surface Science and Ceramics International. In addition, Olfa’s involvement in international research programs like the AUF Research Support Program further highlights her scientific stature. Olfa’s role in municipal elections demonstrates her recognition as a leader in both academia and community involvement. Her ability to balance these responsibilities while maintaining a high standard of academic and research excellence showcases her dedication, which is often celebrated by her peers and colleagues.

🌍Research Focus 

Olfa Turki’s research focuses primarily on the development of lead-free ceramics and piezoelectric nanocomposites. Her work aims to improve the dielectric, ferroelectric, and electrocaloric properties of these materials, making them ideal candidates for use in sensor technologies, energy storage, and nanogenerators. Olfa has conducted in-depth studies on the effects of doping and substitution of various elements, such as lanthanides, to enhance the functional properties of ferroelectric ceramics. Her research has a direct application in creating more sustainable and efficient materials, particularly in the realm of green technologies. Moreover, Olfa explores the structural properties and microstructure of nanocomposites, offering innovative approaches for material synthesis and processing. Her recent international collaboration, NAPES, explores the development of nanocomposites for pressure sensors and energy harvesting, positioning her research at the intersection of advanced material science and applied technologies.

🧠Research Skills

Olfa Turki possesses a strong set of research skills that complement her work in materials science. She is proficient in using scientific programs such as Origin and Fullprof, tools that allow her to analyze complex data and model materials’ behavior. Olfa’s expertise in synthesis techniques, particularly sol-gel hydrothermal synthesis, enables her to create high-performance materials like piezoelectric nanocomposites and lead-free ceramics. Her ability to analyze and interpret dielectric, ferroelectric, and piezoelectric properties is a cornerstone of her research. Olfa is also adept in presenting her findings through oral and poster presentations at conferences, enhancing her scientific communication skills. Furthermore, she collaborates well within interdisciplinary teams and takes an active role in mentoring students, promoting research development. Her work is continually evolving, supported by her ability to stay updated on the latest scientific advancements and her commitment to collaborative research across international platforms.

Publications Top Notes

Sol-gel hydrothermal synthesis of lead-free BT nanoparticles for enhanced dielectric properties in PVDF nanocomposites

  • Authors: O. Turki, A. Slimani, S. Boufid, L. Seveyrat, V. Perrin, R. Ben Hassen, H. Khemakhem
    Journal: Applied Surface Science
    Year: 2025

Electrical, ferroelectric and electro-caloric properties of lead-free Ba₀.₈₅Ca₀.₁₅Ti₀.₉₅(Nb₀.₅Yb₀.₅)₀.₀₅O₃ multifunctional ceramic

  • Authors: I. Zouari, A. Dahri, O. Turki, V. Perrin, L. Seveyrat, Z. Sassi, N. Abdelmoula, H. Khemakhem, W. Dimassi
    Journal: Ceramics International
    Year: 2024

The effect of Erbium on physical properties of the BaCaTi(NbYb)O multifunctional ceramic

  • Authors: I. Zouari, O. Turki, L. Seveyrat, Z. Sassi, N. Abdelmoula, H. Khemakhem
    Journal: Applied Physics A
    Year: 2023

Ferroelectric Properties and Electrocaloric Effect in Dy₂O₃ Substitution on Lead‑Free NBT-6BT Ceramic

  • Authors: O. Turki, A. Slimani, I. Zouari, L. Seveyrat, Z. Sassi, H. Khemakhem
    Journal: Journal of Electronic Materials
    Year: 2022

Improved dielectric, ferroelectric, and electrocaloric properties by Yttrium substitution in NBT-6BT based ceramics

  • Authors: O. Turki, F. Benabdallah, L. Seveyrat, Z. Sassi, V. Perrin, H. Khemakhem
    Journal: Applied Physics A
    Year: 2022

 

 

 

Rajeshree Shinde | Experimental methods | Best Researcher Award

Dr. Rajeshree Shinde | Experimental methods | Best Researcher Award

Sir Vithaldas Thackersey College of Home Science (Empowered Autonomous Status) | India

Dr. Rajeshree Amit Shinde is an Assistant Professor at Sir Vithaldas Thackersey College of Home Science, SNDTWU, Mumbai, with extensive experience in the field of chemistry and education. She has been actively involved in both teaching and administrative responsibilities at various academic levels since 2008. Dr. Shinde is deeply engaged in curriculum development, academic policy, and research. Additionally, she is a coordinator for several committees and has contributed significantly to the quality assurance process at her institution. She is passionate about interdisciplinary learning and has made notable contributions to the integration of science with real-world applications. Dr. Shinde’s research interests span drug-PNP interactions, protein stability, and physicochemical properties of osmolytes.

👨‍🎓Profile

Scopus

🎓Education

Dr. Shinde earned her Ph.D. in Chemistry from the Indian Institute of Technology (IIT) Bombay (2013-2018) under the supervision of Prof. Nand Kishore, focusing on the physicochemical properties of amino acids. She completed her M.Sc. in Chemistry at IIT Bombay (2006-2008), where she demonstrated exceptional academic aptitude with a 7.91 CPI. She also earned her B.Sc. in Chemistry from KET’s V.G. Vaze College, Mumbai, graduating with an impressive 84%. Dr. Shinde has always excelled in her academic journey, from HSC to S.S.C, receiving commendable marks. She has shown significant commitment to continuous professional development through various workshops, training programs, and certifications, including MOOCs and FDPs on topics related to science and education.

🏢Professional Experience

Dr. Shinde has over 15 years of experience in the academic field. Currently, she serves as an Assistant Professor at Sir Vithaldas Thackersey College of Home Science, SNDT Women’s University, since 2010. Prior to this, she was an Assistant Professor at KET’s V.G. Vaze College, Mumbai, from 2008-2009. Throughout her career, Dr. Shinde has undertaken several academic responsibilities, including being a member of the Academic Council, UG Ad-hoc Board of Studies, and a special invitee for the Board of Studies for the Food, Nutrition, and Dietetics Department at her current institution. She has also been involved in the design and development of innovative syllabi for diverse courses. Dr. Shinde has been instrumental in guiding M.Sc. students, shaping the next generation of researchers, and playing a pivotal role in institutional governance.

🏆Awards and Honors

Dr. Shinde’s career is distinguished by several accolades. In 2018, she was the winner of the cartoon competition during Vigilance Awareness Week at IIT Bombay. She has also contributed to national and international journals, with several publications in high-impact research areas such as physicochemical properties of amino acids and quantum dots as antimicrobial agents. Dr. Shinde has actively participated in conferences, workshops, and seminars, presenting her research findings in multiple oral and poster presentations, including those at the Mega Conclave Mission Millets in 2023. Her leadership was recognized in organizing multiple events, including the YUVA Mahotsav and regional seminars. She has also served as an examiner for Ph.D. theses, further cementing her role in the academic community.

📚Research Focus

Dr. Rajeshree Shinde’s research primarily explores drug-PNP interactions, the physicochemical properties of osmolytes, and their impact on protein stability. Her Ph.D. thesis focused on the synergistic effects of amino acids on protein stability, which provides insights into the behavior of osmolytes and biomolecules in various solutions. Dr. Shinde’s expertise includes utilizing advanced instrumental techniques such as UV-VIS spectrophotometry, fluorescence spectrophotometry, and isothermal titration calorimetry. Additionally, her ongoing projects investigate the nutritional efficacy of millets and moringa leaves powder as food fortificants. Dr. Shinde’s interdisciplinary approach combines chemistry with nutrition, making her work relevant to the development of functional foods and dietary interventions. She is actively engaged in research collaborations and has secured research grants for projects on energy bars and protein nanoparticle applications.

🧠Research Skills 

Dr. Rajeshree Amit Shinde is proficient in a range of instrumental techniques that support her research in chemistry and food science. Her expertise includes UV-VIS Spectrophotometry, Fluorescence Spectrophotometry, Isothermal Titration Calorimetry, Circular Dichroism, and High-Performance Liquid Chromatography (HPLC), among others. She has also conducted extensive work with Infrared Spectroscopy to analyze molecular structures and interactions. These techniques enable her to probe the thermodynamic and conformational behavior of proteins in the presence of osmolytes, which is central to her research. Dr. Shinde is skilled in data analysis, utilizing tools like Google Sheets for compiling research data, particularly in the context of AQAR submissions and research publications. Her research not only emphasizes chemical analysis but also integrates interdisciplinary approaches, combining food science, biochemistry, and sustainability, to develop functional food solutions with practical applications.

 

Md Wahadoszamen | Experimental methods | Best Researcher Award

Prof. Dr. Md Wahadoszamen | Experimental methods | Best Researcher Award

Professor of Physics at University of Dhaka, Bangladesh

Profile🎓

Early Academic Pursuits 🎓

Dr. Md. Wahadoszamen embarked on his academic journey at the University of Dhaka, Bangladesh, where he earned his BSc in Physics (April 1999) and MSc in Physics (December 2000). Driven by his passion for material science, he pursued further studies at Hokkaido University, Japan, where he earned his PhD in Material Science in March 2006. His academic pursuits laid a solid foundation in experimental and theoretical laser physics, biophotonics, and nanophotonics, which would become central to his future research.

Professional Endeavors and Research Focus 🔬

Dr. Wahadoszamen’s career spans a broad spectrum of prestigious academic institutions across the globe. He joined the University of Dhaka as a Lecturer in 2006, eventually advancing to the position of Professor in May 2016. His academic role at the University of Dhaka has been complemented by positions at Kwansei Gakuin University in Japan, Carnegie Mellon University in the United States, and VU University Amsterdam in the Netherlands. These international engagements have enriched his research and expanded his academic influence globally.

His primary research interests lie at the intersection of laser physics, optical physics, and biophotonics. Specifically, Dr. Wahadoszamen has specialized in Raman Spectroscopy, Surface-Enhanced Raman Spectroscopy (SERS), Laser-Induced Breakdown Spectroscopy (LIBS), and Z-Scan Techniques. His work involves developing advanced materials like monometallic and bimetallic nanocomposites and highly fluorescent carbon nanodots, which have numerous applications in fields such as materials science, photonics, and biomedical imaging.

Contributions and Research Impact 🌟

Dr. Wahadoszamen’s contributions to laser and nanophotonics have significantly advanced the understanding of molecular interactions and material properties under laser illumination. His work on laser spectroscopy has provided new insights into nanomaterials and their applications, particularly in biomedical diagnostics and environmental monitoring. The development of carbon nanodots with high fluorescence properties has opened up new avenues in bioimaging and sensor technology. His research also explores biophysical applications of lasers, specifically in studying biological systems at the molecular and cellular levels.Through his research, Dr. Wahadoszamen has influenced key sectors, particularly in the fields of optical spectroscopy, nanotechnology, and biophotonics, where his work on nanocomposites and optical sensors has the potential to impact various industries, from medicine to environmental monitoring.

Teaching Experience and Mentorship 📚

Dr. Wahadoszamen has been an influential educator, teaching advanced courses in Quantum Mechanics, Biophysics, and Laser Physics at institutions such as the University of Dhaka, Kwansei Gakuin University, and University of Tsukuba. His extensive teaching experience, especially in guiding graduate students and postdocs, demonstrates his commitment to cultivating the next generation of scientists. He has taught graduate-level courses like Advanced Laser Physics for MS students, focusing on cutting-edge topics in laser theory and spectroscopy. In addition, he has supervised and mentored numerous MSc and PhD students throughout his career, preparing them to conduct pioneering research in physics and material science.

Technical Skills and Expertise 🛠️

Dr. Wahadoszamen possesses a wide range of technical skills that are critical to his research success:

  • Raman Spectroscopy (including Surface-Enhanced Raman Spectroscopy)
  • Laser-Induced Breakdown Spectroscopy (LIBS)
  • Z-Scan and Stark Spectroscopy
  • Nanocomposite Fabrication, including both monometallic and bimetallic materials
  • Fluorescence Spectroscopy and Absorption Spectroscopy

His ability to develop and implement innovative experimental techniques has led to significant advancements in molecular and material sciences.

Legacy and Future Contributions 🌍

Dr. Wahadoszamen’s career reflects his global impact as a leader in laser physics and biophotonics. His research legacy continues to inspire both his students and the broader scientific community. As a Professor and researcher, he has not only contributed to the scientific literature but also fostered a culture of collaborative research, working with prominent scientists from across the world. With future research projects focused on quantum photonics, bioimaging, and advanced nanomaterials, his work promises to make even more groundbreaking contributions to the fields of material science and biophotonics.

Research Collaborations and Academic Citations 📈

Dr. Wahadoszamen’s international research collaborations with experts from VU University Amsterdam, Carnegie Mellon University, Moscow State University, and many others have elevated his research output. His ability to engage with leading researchers from diverse institutions allows him to stay at the cutting edge of nanophotonics and biophotonics. With over 1000 citations and numerous influential publications in high-impact journals, his academic reputation continues to grow. His contributions have made a lasting impact in nanomaterials, molecular photonics, and laser spectroscopy.

Academic Service and Leadership 🏅

In addition to his research and teaching, Dr. Wahadoszamen has taken on leadership roles, such as serving as the Secretary for the International e-Conference on Physics 2021 organized by the University of Dhaka. He has also been an active student advisor and treasurer for various organizations, showcasing his commitment to academic service and community engagement. His leadership in organizing conferences and guiding young researchers further highlights his influence within the academic community.

A Vision for the Future 🌠

As Dr. Wahadoszamen continues to build on his outstanding achievements, his future contributions to nanotechnology, biophotonics, and laser spectroscopy are poised to shape the next generation of scientific innovations. His commitment to cutting-edge research, combined with his dedication to education and mentoring, ensures that his legacy will endure. Through his ongoing research in nanocomposites, carbon nanodots, and bioimaging, Dr. Wahadoszamen is well-positioned to continue influencing not only academic circles but also the broader scientific and technological landscape in the years to come.

Top Noted Publications📖

  • Authors: Michal Gwizdala, Tjaart PJ Krüger, Md Wahadoszamen, J Michael Gruber, Rienk Van Grondelle
  • Journal: The journal of physical chemistry letters
  • Year: 2018

Identification of two emitting sites in the dissipative state of the major light harvesting antenna

  • Authors: Md Wahadoszamen, Rudi Berera, Anjue Mane Ara, Elisabet Romero, Rienk van Grondelle
  • Journal: Physical Chemistry Chemical Physics
  • Year: 2012

Laser Raman spectroscopy with different excitation sources and extension to surface enhanced Raman spectroscopy

  • Authors: Md Wahadoszamen, Arifur Rahaman, Nabil Md Rakinul Hoque, Aminul I Talukder, Kazi Monowar Abedin, AFM Yusuf Haider
  • Journal: Journal of Spectroscopy
  • Year: 2015

Rigidity and polarity effects on the electronic properties of two deep blue delayed fluorescence emitters

  • Authors: Christian M Legaspi, Regan E Stubbs, Md Wahadoszaman, David J Yaron, Linda A Peteanu, Abraham Kemboi, Eric Fossum, Yongli Lu, Qi Zheng, Lewis J Rothberg
  • Journal: The Journal of Physical Chemistry
  • Year: 2018

Charge transfer states in phycobilisomes

  • Authors: Md Wahadoszamen, Tjaart PJ Krüger, Anjue Mane Ara, Rienk Van Grondelle, Michal Gwizdala
  • Journal: Biochimica et Biophysica Acta (BBA)-Bioenergetics
  • Year: 2020

 

 

Celal Kursun | Experimental methods | Best Researcher Award

Assoc Prof Dr. Celal Kursun | Experimental methods | Best Researcher Award

Head of Materials Science and Engineering at Kahramanmaras Sutcu Imam University, Turkey

Dr. Celal Kurşun is an Associate Professor at Kahramanmaraş Sütçü İmam University, specializing in Materials Science and Engineering. He completed his postdoctoral research at the University of Wisconsin-Madison and has a strong background in the synthesis and characterization of advanced materials, including magnesium-based alloys and metallic glasses. Dr. Kurşun has held various academic positions, including Assistant Professor and Research Specialist, and has supervised numerous graduate theses.

🎓Profile

Early Academic Pursuits 📚

Dr. Celal Kurşun’s academic journey is a testament to his dedication to materials science and engineering, with a particular focus on advanced alloys, structural properties, and energy applications. His academic path began with a Bachelor’s degree in 2009, followed by a Master’s degree in 2012, where he investigated the structural and thermal properties of copper-based alloys. These early pursuits laid the foundation for his more extensive doctoral research, where he completed not one but two PhD theses. The first, completed in 2015, focused on the structural, thermal, and mechanical properties of Cu-based nanocrystalline alloys, while the second (2018) shifted focus to magnesium-based amorphous and nanocrystalline alloys, particularly their mechanical and hydrogen storage capacities. This early academic pursuit of diverse materials’ properties set the stage for his later contributions to high-impact research areas such as energy storage, radiation shielding, and alloy design.

Professional Endeavors & Postdoctoral Research 🔬

Dr. Kurşun’s professional career is distinguished by both teaching and high-level research. After earning his PhD, he undertook a postdoctoral position at the prestigious University of Wisconsin-Madison (2018-2020) within the Materials Science and Engineering Department. Here, his research concentrated on the design, synthesis, and characterization of advanced magnesium-based bulk metallic glass alloys for hydrogen storage and energy applications. This period not only sharpened his research skills but also allowed him to engage in cutting-edge projects with significant implications for sustainable energy technologies. His postdoctoral work solidified his reputation as a leading figure in the study of energy-efficient materials.

Contributions and Research Focus ⚙️

Dr. Kurşun’s research focuses on advanced materials, particularly nanostructured and metallic glass alloys. His work addresses critical challenges in energy storage, with a focus on hydrogen storage in magnesium-based alloys, which holds promise for clean energy applications. Additionally, his research on radiation shielding materials, such as boron-doped titanium alloys and Al-Gd2O3 composites, contributes to industries requiring advanced protective materials against neutron and gamma radiation, such as nuclear energy and space exploration.

Impact and Influence 🌍

Dr. Kurşun’s research has not only advanced academic knowledge but has also had significant real-world applications. His groundbreaking work on magnesium-based alloys for hydrogen storage and his innovative approaches to improving radiation shielding materials have placed him at the forefront of energy and environmental research. Furthermore, his academic leadership has had a broad impact through the mentorship of numerous graduate students, many of whom have gone on to pursue successful careers in materials science and engineering. His recognition within international scientific organizations such as the American Physical Society and The Minerals, Metals & Materials Society underscores his influence on the global materials science community.

Academic Citations 📑

Dr. Kurşun’s work has been consistently recognized and cited in leading international journals, including Journal of Materials Science: Materials in Electronics, Ceramics International, and HELIYON. His research on the structural and mechanical properties of alloys, radiation shielding, and catalytic processes is frequently cited by researchers working in similar domains, contributing to the development of novel materials and technologies. His citation record reflects the impact his work has had on advancing knowledge and innovation in materials science, energy storage, and environmental sustainability.

Technical Skills 🛠️

Dr. Kurşun possesses an extensive skill set, combining advanced experimental techniques with theoretical modeling. His technical expertise includes the design, synthesis, and characterization of amorphous and nanocrystalline alloys, as well as mechanical testing, neutron and gamma radiation shielding, and the study of thermal properties of materials. His familiarity with techniques such as arc melting, mechanical alloying, and the use of various characterization tools (e.g., X-ray diffraction, scanning electron microscopy) allows him to address complex challenges in materials science.

Teaching Experience 🍎

Throughout his career, Dr. Kurşun has demonstrated a strong commitment to teaching and mentoring students. As an Associate Professor, he has designed and taught various courses in materials science, solid-state physics, and engineering, preparing the next generation of scientists and engineers. His approach to teaching emphasizes not only the theoretical foundations of materials science but also practical, hands-on experiences that prepare students for real-world challenges. In addition to his classroom duties, Dr. Kurşun has supervised a number of graduate and undergraduate theses, helping students pursue their research interests and develop critical thinking and analytical skills.

Legacy and Future Contributions 🔮

Dr. Kurşun’s legacy is already being shaped by his continued research and mentorship, with his influence extending to both the scientific community and the educational sector. Looking ahead, Dr. Kurşun aims to deepen his work on sustainable materials for energy applications, particularly in developing alloys that can address the global demand for clean energy solutions. His research trajectory also hints at greater interdisciplinary work, exploring areas where materials science meets environmental sustainability, energy storage, and the circular economy.

Publication Top Notes📖

Structure, mechanical, and neutron radiation shielding characteristics of mechanically milled nanostructured (100-x)Al-xGd2O3 metal composites
  • Authors: Celal Kursun, Meng Gao, Ali Orkun Yalcin, Khursheed A. Parrey, Yasin Gaylan
    Journal: Ceramics International
    Year: 2024
Unraveling structural relaxation induced ductile-to-brittle transition from perspective of shear band nucleation kinetics in metallic glass
  • Authors: Meng Gao, Celal Kursun, John H. Perepezko
    Journal: Journal of Alloys and Compounds
    Year: 2023
Synthesis and mechanical properties of (Ni70Si30)100−x Fe x (x = 0, 5, 10) alloys
  • Authors: Celal Kursun, Ahmet Muslim Aksoy
    Journal: Emerging Materials Research
    Year: 2019
Mechanical properties, microstructural and thermal evolution of Mg65Ni20Y15−xSix (X = 1, 2, 3) alloys by mechanical alloying
  • Authors: Celal Kursun, Musa Gogebakan, Hasan Eskalen
    Journal: Materials Research Express
    Year: 2018
The Effect of Milling Time on the Synthesis of Cu54Mg22Ti18Ni6 Alloy
  • Authors: Celal Kursun, Musa Gogebakan
    Journal: 9th International Physics Conference of the Balkan Physical Union (Bpu-9)
    Year: 2016

 

 

Ali Ajami | Experimental methods | Best Researcher Award

Prof. Ali Ajami | Experimental methods | Best Researcher Award

Prof. Elec. Eng. at Azarbaijan Shahid Madani University (ASMU) , Iran

Ali Ajami is a prominent Iranian electrical engineer born on August 23, 1973. He is a Professor at the Department of Electrical Engineering at Azerbaijan Shahid Madani University. Dr. Ajami has made significant contributions to the field of electrical engineering, particularly in power electronics and renewable energy applications. With a career spanning over two decades, he has combined teaching, administration, and research to enhance the educational landscape at his university. His leadership roles, including Vice President for Research and Technology, showcase his commitment to advancing research initiatives. Dr. Ajami’s extensive academic and administrative experience makes him a respected figure in his field.

 🎓Profile:

Education:

Dr. Ajami obtained his Ph.D. in Electrical Engineering from Tabriz University in 2005, following his M.Sc. in 1999 and B.Sc. in 1996, also from the same institution. His solid educational foundation has equipped him with the knowledge and skills necessary for his professional journey. His studies focused on various aspects of electrical and electronic engineering, allowing him to develop a deep understanding of the field. His academic background is complemented by years of practical experience, positioning him as an expert in power electronics and related areas. Dr. Ajami’s educational achievements are a testament to his dedication and expertise in electrical engineering.

Professional Experience:

Dr. Ajami’s professional journey began as an Assistant Professor at Azerbaijan Shahid Madani University in 2006, where he progressed to Associate Professor in 2011 and Professor in 2016. He has held several significant administrative roles, including Vice President for Research and Technology from 2014 to 2022 and Director of Research Affairs. His teaching portfolio includes a wide range of undergraduate and graduate courses, emphasizing industrial electronics, power quality, and modern control systems. Additionally, he has supervised numerous Ph.D. and Master’s theses, shaping the next generation of engineers. Dr. Ajami’s extensive experience in academia highlights his commitment to education and research excellence.

Research Focus:

Dr. Ajami’s research interests are centered on the design and control of power electronic converters, with applications in renewable energy, electric vehicles, and energy storage systems. He is particularly focused on the dynamic and steady-state modeling of FACTS devices such as STATCOM and UPFC, as well as on harmonics and power quality compensation systems. His expertise extends to the use of microprocessors and digital signal processors in control systems for power electronics. Dr. Ajami’s work aims to enhance the efficiency and reliability of electrical systems, making significant contributions to the advancement of sustainable energy technologies.

Awards and Honors:

Dr. Ajami has received multiple Researcher Awards from Azerbaijan University of Tarbiat Moallem and Azerbaijan Shahid Madani University, recognizing his exceptional contributions to research from 2006 to 2015. Notably, he was awarded the Industrial Researcher Award and ranked among the top 2% of highly cited researchers worldwide from 2020 to present. His accolades reflect his dedication to advancing knowledge and innovation in electrical engineering. These honors not only acknowledge his individual achievements but also enhance the reputation of his affiliated institutions. Dr. Ajami’s awards illustrate his impact on the academic and industrial sectors.

 📚Publication Top Notes:

Title: Theoretical and experimental evaluation of SEPIC-based DC–DC converters with two-winding and three-winding coupled inductors
  • Authors: Mahmoudi, M., Ajami, A., Babaei, E., Soleimanifard, J.
    Publication Year: 2022
    Citations: 5
Title: A non‐isolated high step‐up DC‐DC converter with integrated 3 winding coupled inductor and reduced switch voltage stress
  • Authors: M. Mahmoudi, A. Ajami, E. Babaei
    Publication Year: 2018
    Citations: 37
Title: Minimisations of total harmonic distortion in cascaded transformers multilevel inverter by modifying turn ratios of the transformers and input voltage regulation
  • Authors: A. Ajami, A. Farakhor, H. Ardi
    Publication Year: 2014
    Citations: 37
Title: Transformer‐based multilevel inverters: analysis, design and implementation
  • Authors: S. Salehahari, E. Babaei, SH. Hosseini, A. Ajami
    Publication Year: 2019
    Citations: 32
Title: A single switch high step‐up DC‐DC converter with three winding coupled inductor
  • Authors: M. Mahmoudi, A. Ajami, E. Babaei
    Publication Year: 2019
    Citations: 32
Title: Design and control of a grid tied 6-switch converter for two independent low power wind energy resources based on PMSGs with MPPT capability
  • Authors: A. Ajami, R. Alizadeh, M. Elmi
    Publication Year: 2016
    Citations: 32