Felix Lev | Particle physics and cosmology | Outstanding Scientist Award

Prof Dr. Felix Lev | Particle physics and cosmology | Outstanding Scientist Award

Physics/Mathematics, Independent Researcher, United States

Felix Lev is a prominent physicist specializing in quantum theory and mathematics. He earned his Doctorate in Physical and Mathematical Sciences in 1991 and has made significant contributions to foundational physics, particularly in understanding the particle-antiparticle dilemma and cosmological challenges. Lev is also a seasoned scientist with extensive experience in software development for integrated circuit design, bridging theoretical physics with practical applications. His influential book, “Finite Mathematics as the Foundation of Classical Mathematics and Quantum Theory,” showcases his groundbreaking research.

Profile:

Education:

Felix Lev holds a Doctorate in Physical and Mathematical Sciences from the Institute for High Energy Physics, awarded in 1991, where his dissertation focused on the many-body problem in relativistic quantum mechanics. Prior to that, he earned a Ph.D. in 1977 from the Institute of Theoretical and Experimental Physics in Moscow, with a dissertation on elastic scattering processes. He also completed his Master’s in Physics at the Moscow Institute for Physics and Technology in 1971. His educational background has laid a strong foundation for his research and contributions to theoretical physics and mathematics.

Professional Experience:

Lev has a distinguished career as a physicist and scientist. He served as a Senior Scientist at Artwork Conversion Software from 1999 to 2024, developing cutting-edge optimization algorithms for integrated circuit design while continuing his research in quantum theory. Previously, he was a Leading Scientist at the Joint Institute for Nuclear Research in Russia from 1992 to 1999 and held key roles at various research institutes throughout his career. He also has teaching experience, having lectured on topics like relativistic quantum mechanics at several prestigious institutions, including Santa Monica Community College and the Joint Institute for Nuclear Research.

Research focus:

Felix Lev’s research primarily centers on the foundations of quantum theory and mathematics. He is particularly interested in constructing quantum theory based on finite mathematics and exploring de Sitter symmetry’s implications. His work addresses fundamental issues such as the particle-antiparticle problem, the cosmological constant problem, and the challenges of cosmic acceleration. Lev’s approach proposes innovative solutions that redefine traditional views, suggesting that gravity may stem from the finiteness of nature. His publications and theories aim to reshape our understanding of quantum mechanics and its foundational principles, offering a fresh perspective on the universe’s mysteries.

Awards and Honors:

Felix Lev has received notable accolades throughout his career. In 1997, he was awarded the Heisenberg-Landau Grant, a prestigious personal grant from the Max Planck Institute of Physics and the Joint Institute for Nuclear Research, recognizing his exceptional contributions to theoretical physics. Additionally, he was honored as a Senior Scientist in Theoretical and Mathematical Physics in 1987 by the Presidium of the USSR Academy of Sciences. These awards reflect his significant impact on the fields of quantum theory and mathematics, emphasizing his status as a leading researcher.

Publication Top Notes:

  • Exact construction of the electromagnetic current operator in relativistic quantum mechanics
    Authors: FM Lev
    Year: 1995
    Citations: 80 📄
  • On the role of K∗ K intermediate states in OZI-rule violating reactions of antiproton annihilation
    Authors: D Buzatu, FM Lev
    Year: 1994
    Citations: 76 📄
  • Poincaré covariant current operator and elastic electron-deuteron scattering in the front-form Hamiltonian dynamics
    Authors: FM Lev, E Pace, G Salme
    Year: 2000
    Citations: 73 📄
  • Electromagnetic and weak current operators for interacting systems within the front-form dynamics
    Authors: FM Lev, E Pace, G Salme
    Year: 1998
    Citations: 70 📄
  • Relativistic quantum mechanics and its applications to few-nucleon systems
    Authors: FM Lev
    Year: 1993
    Citations: 67 📄
  • Deuteron magnetic and quadrupole moments with a Poincaré covariant current operator in the front-form dynamics
    Authors: FM Lev, E Pace, G Salme
    Year: 1999
    Citations: 55 📄
  • Finiteness of physics and its possible consequences
    Authors: F Lev
    Year: 1993
    Citations: 40 📄
  • Deep inelastic scattering and final state interaction in an exactly solvable relativistic model
    Authors: E Pace, G Salme, FM Lev
    Year: 1998
    Citations: 37 📄

 

 

 

Weihong Gao | Computational Particle Physics | Women Researcher Award

Mrs. Weihong Gao | Computational Particle Physics | Women Researcher Award

Associate Professor at Harbin Engineering University in China

Dr. Weihong Gao is an esteemed Associate Professor at the School of Materials Science and Chemical Engineering, Harbin Engineering University. With a research career spanning over a decade, Dr. Gao has made significant contributions to the study of shape memory alloys, thermoelectric materials, and material surface interactions. After completing her Ph.D. at Harbin Institute of Technology, she furthered her research through postdoctoral positions and visiting scholar programs at prestigious institutions such as the University of Houston and the National Institute for Materials Science (NIMS) in Japan. Her work is frequently published in leading scientific journals, where she collaborates with experts worldwide. Dr. Gao is also actively involved in mentoring young researchers and contributing to advancing knowledge in materials science.

Profile:

Education:

Dr. Weihong Gao began her academic journey in 2005 by earning a Bachelor’s degree in Materials Physics from the School of Materials Science and Chemical Engineering at Harbin Engineering University, China, in 2009. Continuing her pursuit of knowledge, she completed his Master’s degree in Materials Physics and Chemistry from the same institution in 2012. Dr. Gao achieved her Ph.D. in Materials Physics and Chemistry from the Harbin Institute of Technology in 2015. During her Ph.D., Dr. Gao expanded her horizons by working as a visiting scholar at the University of Houston’s Smart Materials and Structure Laboratory. Her education has been deeply interdisciplinary, with a strong emphasis on advanced materials research, making him a notable figure in materials physics and engineering.

Professional experience:

Dr. Weihong Gao’s professional experience spans multiple esteemed institutions. After completing her Ph.D. in 2015, she worked as a visiting scholar at the Smart Materials and Structure Laboratory at the University of Houston. In 2017, she took on a postdoctoral position in Materials Science and Engineering at the Guangdong University of Technology, further enriching her expertise. From 2017 to 2019, Dr. Gao also worked as a visiting scholar at the Texas Center for Superconductivity at the University of Houston. In 2019, she moved to the National Institute for Materials Science (NIMS) in Japan as a postdoc, where she contributed to groundbreaking research in thermoelectrics. Currently, Dr. Gao serves as an Associate Professor at Harbin Engineering University, where she leads research on shape memory alloys, thermoelectric materials, and material surfaces and interfaces.

Research focus:

Dr. Weihong Gao’s research is centered around advanced materials, specifically shape memory alloys, thermoelectric materials, and material surfaces and interfaces. Her expertise in first-principles calculations enables him to analyze and predict the behavior of materials at the atomic level, contributing to developments in both theoretical and applied materials science. Dr. Gao is particularly interested in improving the mechanical properties and thermal stability of shape memory alloys, which have applications in aerospace, automotive, and medical devices. Additionally, her work on thermoelectric materials focuses on optimizing energy conversion efficiency, a critical area for sustainable energy solutions. Her research combines experimental methods and computational simulations, aiming to enhance the performance of advanced materials in extreme environments.

Award and Honors:

Dr. Weihong Gao has received numerous accolades throughout her research career for her outstanding contributions to materials science. Her work on shape memory alloys and thermoelectric materials has earned recognition in international journals, leading to invitations to serve as a visiting scholar in world-renowned laboratories like the University of Houston and the Texas Center for Superconductivity. She has also been the recipient of several postdoctoral fellowships, including at the prestigious National Institute for Materials Science (NIMS) in Japan. Dr. Gao’s commitment to research excellence has been recognized with multiple awards from institutions in China and beyond, solidifying her reputation as a leading figure in the field of materials physics and chemistry.

Publication Top Notes:

  • Classical tribology and charge-energy evolution theory cooperate to determine nitrided ceramic coating/metal substrate interfacial friction
    Guotan Liu, Zhihao Huang, Weihong Gao*, Bin Sun, Yunxiang Tong, Guosheng Huang*, Yudong Fu*
    Acta Materialia 277 (2023) 120197
  • Data-driven high elastocaloric NiMn-based shape memory alloy optimization with machine learning
    Y. Yang, H. Fu, W. Gao*, W. Su, B. Sun, X. Yi, T. Zheng, X. Meng
    Materials Letters 371 (2023) 136948
  • Recent Advances on Additive Manufactured Shape Memory Alloys
    Y. Yang, W. Gao*, Bin Sun, Y. Fu, X. Meng
    Transactions of Nonferrous Metals Society of China 34 (7) (2023) 2045-2073
  • Understanding the anomalously low thermal properties of Zr₃Ni₃₋ₓCoₓSb₄ thermoelectric material
    X. Wei, Z. Guo, D. Li, C. Li, B. Sun, Y. Fu, W. Gao, Z. Liu
    Materials Today Physics 44 (2023) 101424
  • Mechanical behavior of high entropy ceramic (TiZrHfVNb)C₅ under extreme conditions: A first-principles density functional theory study
    Zesong Wang, Guotan Liu, Weihong Gao*, Yuxi Yang, Ting Zheng, Zhi-Quan Liu, Peifeng Li, Mufu Yan, Yudong Fu*
    Ceramics International 50 (6) (2023) 9820-9831
  • Enhancing the thermal stability and recoverability of ZrCu-based shape memory alloys via interstitial doping
    Yuxi Yang, Mingqi Deng, Weihong Gao*, Bin Sun, Yudong Fu*, Xianglong Meng
    Materials Science and Engineering: A 889 (2024) 145860
  • Cubic phase stabilization and thermoelectric performance optimization in AgBiSe₂–SnTe system
    Zhentao Guo, Yu-Ke Zhu, Ming Liu, Xingyan Dong, Bin Sun, Fengkai Guo, Qian Zhang, Juan Li, Weihong Gao*, Yudong Fu*, Wei Cai, Jiehe Sui, Zihang Liu*
    Materials Today Physics 38 (2023) 101238
  • Atomic-level insights from density functional theory and ab initio molecular dynamics calculations for oxidation mechanism of transition metal doping Nb₄AlC₃(0001) surface
    Guotan Liu, Weihong Gao*, Guosheng Huang, Danni Zhao, Wenlong Su, Bin Sun, Mufu Yan, Yu-dong Fu
    Ceramics International 49 (2023) 40061-40072
  • Modification mechanism of Ti-6Al-4V alloy with pre-coated Ti-Cu-Al multilayer film treated by ion nitriding: Experiments and first-principles calculations
    Guotan Liu, Enhong Wang, Weihong Gao*, Zhihao Huang, Bin Wei, Yuxi Yang, Mufu Yan, Yu-dong Fu*
    Surfaces and Interfaces 40 (2023) 103004
  • Study on the microscopic mechanism of age-strengthened high damage tolerance Al–Cu–Mg alloys
    Guotan Liu, Weihong Gao*, Guosheng Huang*, Keqiang Sun, Bin Sun, Jinlai Fu, Ting Li, Fuguan Cong, Yudong Fu*
    Vacuum 216 (2023) 112442

Conclusion:

Given Weihong Gao’s substantial publication record, international collaborations, and innovative contributions to the fields of shape memory alloys and thermoelectric materials, She is an outstanding candidate for the Best Researcher Award. Her work not only advances theoretical understanding but also offers real-world applications that could significantly impact technology and industry.