Ranjita Kumari Mohapatra | High energy physics | Best Researcher Award

Assist. Prof. Dr. Ranjita Kumari Mohapatra | High energy physics | Best Researcher Award

Rajdhani College Bhubaneswar | India

Dr. Ranjita Kumari Mohapatra is an Assistant Professor at Rajdhani College in Bhubaneswar, Odisha, specializing in the field of Physics. Her academic journey spans a rich history of rigorous research, teaching, and contributions to the scientific community. With over a decade of experience, Dr. Mohapatra has made significant strides in the realm of relativistic heavy-ion collisions, strongly interacting matter, and transport coefficients.

👨‍🎓Profile

Google scholar

Scopus

Early Academic Pursuits 🎓

Dr. Mohapatra’s academic foundation began with her M.Sc. in Physics from Utkal University (2004), followed by a Post-M.Sc. program at the Institute of Physics, Bhubaneswar (2005-2006). Her Ph.D. research, titled Investigating Formation and Evolution of Z(3) Walls and Flow Anisotropies in Relativistic Heavy Ion Collisions, was completed at the Institute of Physics in 2012 under the guidance of Prof. Ajit M. Srivastava.

Professional Endeavors 🏢

Dr. Mohapatra’s career trajectory includes post-doctoral fellowships at prestigious institutions such as the Physical Research Laboratory (2012-2014), IIT Bombay (2018-2019), and Banki College (2019-2023). Since February 2023, she has been serving as an Assistant Professor in the Department of Physics at Rajdhani College. Over the years, she has been involved in cutting-edge research and has become a respected educator, imparting knowledge to both undergraduate and postgraduate students.

Contributions and Research Focus 🔬

Dr. Mohapatra’s research focuses on the equation of state of strongly interacting matter, conserved charge fluctuations, and calculation of transport coefficients in relativistic heavy ion collisions. She is currently spearheading an ongoing project funded by the OURIIP seed fund with a grant of Rs. 402,000/-. Her earlier works, such as Z(3) walls and the acoustic oscillations in heavy-ion collisions, have significantly impacted the understanding of QGP (Quark-Gluon Plasma) dynamics and other key phenomena in nuclear physics.

Impact and Influence 🌍

Dr. Mohapatra’s contributions to high-energy nuclear physics are invaluable. Her work on flow anisotropies and magnetic fields in relativistic heavy-ion collisions, as well as her studies on quark-hadron transitions, have had a profound influence on the field, advancing the understanding of strongly interacting matter. Her research continues to shape the future of QCD (Quantum Chromodynamics) and phase transitions in the early universe.

Academic Citations 📑

Dr. Mohapatra has authored numerous influential publications, with more than 19 research papers in renowned journals such as Phys. Rev. C, Phys. Rev. D, and Nucl. Phys. A. Key publications, like her work on inverse magnetic catalysis and transport coefficients, have been cited widely and contribute to the ongoing discourse in nuclear physics. Her work continues to inspire researchers in the fields of quantum chromodynamics and particle physics.

Research Skills 🧠

Dr. Mohapatra’s research expertise includes relativistic hydrodynamics, QCD phase diagram, magnetic catalysis, transport coefficients, and fluctuations in heavy-ion collisions. She has developed key models for understanding conserved charge fluctuations and the influence of magnetic fields on hadron resonance gas models, with significant applications in astrophysics and nuclear physics. Her analytical and computational skills are essential in advancing the field.

Teaching Experience 📚

Dr. Mohapatra’s teaching career spans several prestigious institutions. She has served as a tutor and teaching assistant for undergraduate and postgraduate courses at IIT Bombay, where she taught subjects like nuclear theory and BTech lab courses. At Banki College and Rajdhani College, she has taught undergraduate students in Physics. With a strong pedagogical approach, she instills deep knowledge of nuclear physics and high-energy physics among her students.

Awards and Honors 🏅

Dr. Mohapatra’s scholarly achievements have earned her significant recognition. She was awarded the OURIIP Seed Fund Research Grant (2021) for her innovative research on strongly interacting matter. Her work has also been acknowledged at national and international conferences, where she has presented her research and contributed to advancing the understanding of heavy-ion collisions.

Legacy and Future Contributions 🌱

As an educator and researcher, Dr. Mohapatra continues to build a lasting legacy through her research contributions and teaching practices. Her future goals include furthering the study of QCD matter, phase transitions, and transport coefficients. Dr. Mohapatra envisions her research aiding in precision measurements and experimental predictions that could revolutionize the understanding of nuclear matter in extreme conditions.

Publications Top Notes

QCD phase diagram and the finite volume fireball: A model study
  • Authors: Shaikh, A., Mohapatra, R.K., Datta, S.
    Journal: Nuclear Physics A
    Year: 2025
Finite Volume Effects on the QCD Chiral Phase Transition Using NJL Model
  • Authors: Shaikh, A., Mohapatra, R.K., Datta, S.
    Journal: Springer Proceedings in Physics
    Year: 2024
Axion mass in a hot QCD plasma
  • Authors: Das, A., Abhishek, A., Mohapatra, R.K., Mishra, H.
    Journal: Proceedings of Science
    Year: 2023
Diffusion matrix associated with the diffusion processes of multiple conserved charges in a hot and dense hadronic matter
  • Authors: Das, A., Mishra, H., Mohapatra, R.K.
    Journal: Physical Review D
    Year: 2022
In Medium Properties of Axion Within a Polyakov Loop Enhanced Nambu-Jona-Lasinio Model
  • Authors: Mohapatra, R.K., Abhishek, A., Das, A., Mishra, H.
    Journal: Springer Proceedings in Physics
    Year: 2022

 

 

 

Meissam Noroozifar | Particle Experiments | Best Researcher Award

Prof. Meissam Noroozifar | Particle Experiments | Best Researcher Award

Catalyst  at University of Toronto in Canada

Prof. Meissam Noroozifar is a distinguished chemist with over two decades of experience in teaching, research, and mentorship. He has made substantial contributions in applied chemistry, nanotechnology, renewable energy, and environmental protection. His research spans a wide range of fields, including nanomaterials, fuel cells, biofuel cells, and water purification. With over 250 peer-reviewed publications, Prof. Noroozifar has established himself as a leader in the chemistry and engineering communities. He has worked extensively with international collaborators and supervised numerous Ph.D. and M.Sc. students, fostering the development of future scientists. Currently, he is a senior research associate at the University of Toronto Scarborough.

Profile:

Education:

Prof. Noroozifar earned his Ph.D. in Chemistry from Shahid Beheshti University, Tehran, Iran, in 2002. His academic journey has been marked by significant contributions to both theoretical and practical aspects of chemistry. His doctoral research laid the foundation for his extensive career in nanomaterials and applied chemistry. Prof. Noroozifar’s education has been complemented by various sabbatical and visiting positions at prestigious institutions, further enriching his expertise and research capabilities.

Professional experience:

Prof. Noroozifar began his academic career as an Assistant Professor at the University of Sistan and Baluchestan (USB) in 2002, advancing to Associate Professor in 2006 and then University Professor by 2010. His roles have included visiting professorships and sabbaticals at the University of Toronto Scarborough and Carleton University. Since 2018, he has been a Senior Research Associate at UTSC, working with prominent labs. His career is marked by extensive supervision of Ph.D. and M.Sc. students and significant contributions to research and teaching in chemistry and applied chemistry.

Research interest:

Prof. Noroozifar’s research focuses on the synthesis and application of nanomaterials, including metallic and bimetallic aerogels, for sustainable energy solutions and environmental remediation. His work explores advanced electrochemical processes, such as CO2 reduction and fuel cell technologies. He is also known for his contributions to the development of new sensors and analytical methods for detecting pollutants and toxic substances in water and wastewater, combining his expertise in nanotechnology with environmental chemistry.

Award and Recognition:

Prof. Noroozifar has received multiple accolades for his outstanding research contributions. He was recognized as the Top Exemplary Researcher at USB in 2018 and received exemplary researcher awards from both USB and its Faculty of Science in 2004, 2009, and 2010. These awards highlight his significant impact in research and academia, showcasing his dedication to advancing the field of chemistry and applied sciences.

Publication Top Notes:

  • Simultaneous and sensitive determination of a quaternary mixture of AA, DA, UA, and Trp using a modified GCE by iron ion-doped natrolite zeolite-multiwall carbon nanotube
    ✍️ M Noroozifar, M Khorasani-Motlagh, R Akbari, MB Parizi
    📘 Biosensors and Bioelectronics, 28(1), 56-63, 2011, cited 198 times
  • Preparation of silver hexacyanoferrate nanoparticles and its application for the simultaneous determination of ascorbic acid, dopamine, and uric acid
    ✍️ M Noroozifar, M Khorasani-Motlagh, A Taheri
    📘 Talanta, 80(5), 1657-1664, 2010, cited 140 times
  • Investigation of a new electrochemical cyanide sensor based on Ag nanoparticles embedded in a three-dimensional sol–gel
    ✍️ A Taheri, M Noroozifar, M Khorasani-Motlagh
    📘 Journal of Electroanalytical Chemistry, 628(1-2), 48-54, 2009, cited 92 times
  • Novel fabrication of PdCu nanostructures decorated on graphene as excellent electrocatalyst toward ethanol oxidation
    ✍️ AS Douk, H Saravani, M Noroozifar
    📘 International Journal of Hydrogen Energy, 42(22), 15149-15159, 2017, cited 87 times
  • Adsorption behavior of Cr (VI) on modified natural zeolite by a new bolaform N, N, N, N′, N′, N′-hexamethyl-1, 9-nonanediammonium dibromide reagent
    ✍️ M Noroozifar, M Khorasani-Motlagh, MN Gorgij, HR Naderpour
    📘 Journal of Hazardous Materials, 155(3), 566-571, 2008, cited 85 times
  • Chemical synthesis and characterization of perovskite NdFeO3 nanocrystals via a co-precipitation method
    ✍️ M Khorasani-Motlagh, M Noroozifar, M Yousefi, S Jahani
    📘 International Journal of Nanoscience and Nanotechnology, 9(1), 7-14, 2013, cited 78 times
  • Flow injection analysis–flame atomic absorption spectrometry system for indirect determination of cyanide using cadmium carbonate as a new solid-phase reactor
    ✍️ M Noroozifar, M Khorasani-Motlagh, SN Hosseini
    📘 Analytica Chimica Acta, 528(2), 269-273, 2005, cited 78 times
  • Palladium aerogel as a high-performance electrocatalyst for ethanol electro-oxidation in alkaline media
    ✍️ MZ Yazdan-Abad, M Noroozifar, ARM Alam, H Saravani
    📘 Journal of Materials Chemistry A, 5(21), 10244-10249, 2017, cited 73 times
  • Specific extraction of chromium as tetrabutylammonium-chromate and spectrophotometric determination by diphenylcarbazide: speciation of chromium in effluent streams
    ✍️ M Noroozifar, M Khorasani-Motlagh
    📘 Analytical Sciences, 19(5), 705-708, 2003, cited 72 times
  • Solid-phase iodine as an oxidant in flow injection analysis: determination of ascorbic acid in pharmaceuticals and foods by background correction
    ✍️ M Noroozifar, M Khorasani-Motlagh
    📘 Talanta, 61(2), 173-179, 2003, cited 67 times

Conclusion:

Prof. Meissam Noroozifar is a strong candidate for the Best Researcher Award. His extensive body of research, diverse expertise, international experience, and mentorship of young researchers make him a deserving nominee. With his proven commitment to advancing scientific knowledge, especially in sustainable energy and environmental protection, his work has high relevance and impact. Strengthening his global outreach and focusing on commercial applications could further enhance his profile, but his current accomplishments alone make him highly qualified for the award.