Venkatesh Bharathi Nagarajan | Experimental methods | Best Researcher Award

Dr. Venkatesh Bharathi Nagarajan | Experimental methods | Best Researcher Award

Mannar Thirumalai Naicker College | India

Dr. N. Venkatesh Bharathi is an accomplished Assistant Professor at the PG and Research Centre of Physics, Mannar Thirumalai Naicker College, Madurai, India. He earned his Ph.D. in Physics from Madurai Kamaraj University in 2022, focusing on the Synthesis and Luminescence Investigation of Phosphor Materials. With over 3 years of teaching experience, he has established himself as a respected academic professional dedicated to advancing the field of material science and physics.

๐Ÿ‘จโ€๐ŸŽ“Profile

Scopus

Orcid

Early Academic Pursuits ๐Ÿ“š

Dr. Bharathi began his academic journey with a Bachelor of Science in Physics from Mannar Thirumalai Naicker College (2014). His pursuit of higher education led him to N.M.S.S.V.N. College, where he earned a Master of Science in Physics (2016), securing Second Rank in his M.Sc. examination. This early academic success laid the foundation for his future research and career.

Professional Endeavors ๐Ÿ’ผ

Dr. Bharathi currently holds the position of Assistant Professor in the PG and Research Centre of Physics at Mannar Thirumalai Naicker College, where he has been serving since September 2021. Alongside teaching, he plays an active role in organizing conferences, workshops, and hands-on training programs, such as the International Conference on Recent Advancement in Material Science and Its Applications (ICRAMSA โ€™23). His professional role includes research supervision, academic mentorship, and contributing to the development of the institution.

Contributions and Research Focus ๐Ÿ”ฌ

Dr. Bharathi’s research spans various areas of material science, including low-temperature crystal growth, nanopowders, phosphor materials, and solid-state ionics for energy storage devices. His Ph.D. thesis focused on the Synthesis and Luminescence Investigation of Phosphor Materials, exploring their potential for optoelectronic applications. His research emphasizes crystal structure analysis through Density Functional Theory (DFT) and the development of luminescent materials that could have significant applications in modern technologies.

Impact and Influence ๐ŸŒŸ

Dr. Bharathi’s research has made a notable impact in the scientific community, with 14 publications in high-impact journals indexed in UGC Care, SCI, and WoS. His work has gained recognition, with 94 citations and an h-index of 6, highlighting the relevance and influence of his contributions. Furthermore, he has been awarded the Young Researcher Award for 2023 from the InSc Institute of Scholars, recognizing his promising research potential and achievements.

Academic Cites ๐Ÿ“‘

A total of 94 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations: 94
  • h-index: 6
  • i10-index: 6

These metrics highlight Dr. Bharathi’s growing influence in the field of phosphor materials and material science research.

Research Skills ๐Ÿ› ๏ธ

Dr. Bharathi is well-versed in lab management, statistical tools, and programming languages such as C & C++. His research skills extend to advanced techniques in characterization of nanomaterials, luminescence investigation, and the application of Density Functional Theory (DFT) in analyzing crystal structures. He has also been involved in energy storage device research, focusing on the development of solid-state ionics.

Teaching Experience ๐ŸŽ

With over 3 years of teaching experience, Dr. Bharathi has been an integral part of the PG and Research Centre of Physics. He plays a key role in delivering lectures, mentoring students, and providing hands-on experiences. He has actively engaged in academic service as well, organizing and leading initiatives such as the hands-on training program on smartphone servicing and troubleshooting in 2022, contributing to both student development and research skills enhancement.

Awards and Honors ๐Ÿ†

Dr. Bharathi’s academic excellence has been recognized through multiple prestigious awards:

  • Best Outgoing Student (2014)
  • Man sans Frontiers Award (2014)
  • Second Rank in M.Sc. Physics Examination (2016)
  • Young Researcher Award (2023) by InSc Institute of Scholars

These honors reflect his dedication to excellence in academics and research.

Legacy and Future Contributions ๐ŸŒฑ

Dr. Bharathi is dedicated to leaving a lasting legacy through his contributions to material science research and academic excellence. With a growing portfolio of published works and ongoing projects, such as the Institutional Sponsored Faculty Research Project on Eu3+/Dy3+ Barium Vanadate Phosphors, he is poised to make further advancements in the field of luminescence and optoelectronics. His future endeavors include expanding research collaborations, securing larger research grants, and further shaping the academic landscape through mentorship and teaching.

Publications Top Notes

On the effective vibrational temperature of the source using (2)ยณฮ  – Xยณฮ  system of GeC molecule
  • Authors: Sindhan, R., Bharathi, N.V., Ramaswamy, S.
    Journal: Astronomy and Computing
    Year: 2024
Synthesis and luminescence investigation of Baโ‚‚Vโ‚‚Oโ‚‡-co-doped Dyยณโบ/Euยณโบ phosphors for white light-emitting diode applications
  • Authors: Venkatesh Bharathi, N., Kavitha, P., Ramaswamy, S., Jayabalakrishnan, S.S., Sakthipandi, K.
    Journal: Indian Journal of Physics
    Year: 2023
Turning of luminescence properties of Baโ‚‚Vโ‚‚Oโ‚‡ phosphors by co-doping Euยณโบ/Dyยณโบ ions
  • Authors: Bharathi, N.V., Kavitha, P., Ramaswamy, S., Jayabalakrishnan, S.S., Sakthipandi, K.
    Journal: Bulletin of Materials Science
    Year: 2022
Synthesis and characterization of a novel Baโ‚‚โ‚‹โ‚“Vโ‚‚Oโ‚‡:โ‚“Dyยณโบ phosphor by hydrothermal method for WLED applications
  • Authors: Bharathi, N.V., Jeyakumaran, T., Ramaswamy, S., Jayabalakrishnan, S.S.
    Journal: AIP Conference Proceedings
    Year: 2021
Synthesis and Luminescence Investigation of Euยณโบ Doped Caโ‚‚KZnโ‚‚Vโ‚ƒOโ‚โ‚‚ Phosphors: A Potential Material for WLEDs Applications
  • Authors: Jeyakumaran, T., Bharathi, N.V., Sriramachandran, P., Shanmugavel, R., Ramaswamy, S.
    Journal: Journal of Inorganic and Organometallic Polymers and Materials
    Year: 2021

 

 

Muhammad Ijaz | Experimental methods | Best Researcher Award

Mr. Muhammad Ijaz | Experimental methods | Best Researcher Award

Institute of Physics, Gomal University | Pakistan

Mr. Muhammad Ijaz, a Ph.D. scholar in Material Science at the Institute of Physics, Gomal University, D.I. Khan, Pakistan, has demonstrated profound academic and research expertise. His research primarily focuses on the development of ferrite-based nanostructure materials and their potential applications in magnetic and electronic devices. With an M.Phil. in Physics and a Bachelor’s degree in Physics, Mr. Ijaz has excelled academically and is committed to advancing material science through innovative research.

๐Ÿ‘จโ€๐ŸŽ“Profile

Scopus

Early Academic Pursuits ๐Ÿ“š

Mr. Ijaz began his academic journey with a strong foundation in Physics, earning a First Division in his Bachelor’s and Master’s degrees from University of Sargodha and Gomal University, respectively. He further pursued Material Science in his M.Phil., where his research interests took shape, particularly in nanomaterials and their magnetic properties.

Professional Endeavors ๐Ÿ’ผ

In addition to his academic qualifications, Mr. Ijaz has significant professional experience. He served as a Lecturer (Internship basis) in Govt. Degree College Liaqatabad and is currently a Lecturer in Physics at Govt. Associate College Kundian. His dedication to teaching and the academic growth of his students highlights his professionalism and commitment to education.

Contributions and Research Focus ๐Ÿงช

Mr. Ijazโ€™s research interests focus on the development of ferrite-based nanostructures and their various applications, particularly in magnetic devices, electronics, and sensors. His projects include the structural study of polymorphic HoVO4 single crystals and the impact of cobalt on the magnetic properties of BaFe hexaferrites. These areas of research are critical for the advancement of nanotechnology, functional materials, and the broader field of material science.

Impact and Influence ๐ŸŒ

Mr. Ijaz has made a notable impact in the field of material science through his research, which has been published in several prestigious journals. His work on rare-earth-doped ferrites, nanoparticles, and sensor technologies contributes significantly to the understanding and development of magnetic and dielectric materials. This research is integral to advancing industries such as electronics, energy storage, and sensor technology.

Academic Citations ๐Ÿ“ˆ

Mr. Ijazโ€™s publications include cutting-edge research on materials like BaFe hexaferrites, doped SnO2 nanoparticles, and Ca-Cu-based ferrites. Although his citation count is still growing, his works are gradually gaining recognition in scientific communities, especially in areas related to magnetic properties and sensor applications. The citation impact of his work reflects its relevance in advancing modern material science.

Research Skills ๐Ÿง‘โ€๐Ÿ”ฌ

Mr. Ijaz possesses a comprehensive set of scientific skills essential for his research, including:

  • UV-VIS Spectroscopy
  • Fourier Transform Infrared Spectroscopy (FTIR)
  • Scanning Electron Microscopy (SEM)
  • X-ray Diffraction (XRD)
  • Energy Dispersive X-ray (EDX) Spectroscopy

These advanced techniques allow him to explore the structural, morphological, and magnetic properties of materials with precision and detail, critical for the success of his projects in nanomaterials and ferrite-based technologies.

Teaching Experience ๐Ÿซ

As a Lecturer in Physics at Govt. Associate College Kundian, Mr. Ijaz teaches undergraduate students, imparting knowledge in core areas such as material science and applied physics. His previous role as a Lecturer in Physics at Govt. Degree College Liaqatabad also reflects his commitment to nurturing young scientists and contributing to the academic development of his students.

Awards and Honors ๐Ÿ†

Though Mr. Ijaz has not listed specific awards in his profile, his academic performance, as evidenced by his first division in all his degrees, demonstrates his excellence and dedication. Given his ongoing contributions to material science, further recognition and honors are likely to follow as his research continues to gain prominence.

Legacy and Future Contributions ๐Ÿ”ฎ

Mr. Ijaz is poised to leave a lasting legacy in the field of material science, particularly in the development of nanomaterials and magnetic materials. His research is set to influence future technologies in fields such as sensor applications, energy storage, and nanotechnology. With continued work and publication, his contribution to advancing functional materials in both academic and practical contexts will be highly influential.

Publications Top Notes

Impact of cobalt substitutions on optical, magnetic, dielectric, and structural properties of BaFe11.6-xAl0.4CoxO19 hexaferrites prepared by Co-precipitation process followed by rapid sonochemical synthesis

  • Authors: Ijaz, M., Ullah, H., Al-Hazmi, G.A.A.M., Althomali, R.H., Asif, S.U.
    Journal: Materials Chemistry and Physics
    Year: 2024, 321, 129504

Cu2+/Dy3+ dual doped calcium based Ca1-xCuxFe12-xDyxO19 hexaferrites: Microstructural and magnetic properties for magnetic applications

  • Authors: Ijaz, M., Shaheen, N., Saeedi, A.M., Ullah, H., Asif, S.U.
    Journal: Materials Science and Engineering: B
    Year: 2024, 304, 117341

Microstructural, morphological and magnetic behaviour of Al3+ replaced BaFe11.5Co0.5O19 hexaferrites synthesized via sol-gel auto combustion route

  • Authors: Ijaz, M., Asif, S.U., Solre, G.F.B., Al-Asbahi, B.A., Ullah, H.
    Journal: Physica Scripta
    Year: 2024, 99(5), 055959

Structural, dielectric and magnetic properties of terbium doped strontium spinel ferrite (SrFe2O4) synthesized by sol-gel method

  • Authors: Shaheen, R., Ullah, H., Moharam, M.M., Asif, S.U., Tahir, H.M.
    Journal: Journal of Rare Earths
    Year: 2024

Co-precipitation method followed by ultrafast sonochemical synthesis of aluminium doped M type BaFe11.4-xAlxCo0.6O19 hexaferrites for various applications

  • Authors: Ijaz, M., Ullah, H., Ali Al-Asbahi, B., Abbas, Z., Asif, S.U.
    Journal: Journal of Magnetism and Magnetic Materials
    Year: 2024, 589, 171559

 

 

Jie Tian | Experimental methods | Best Researcher Award

Prof. Jie Tian | Experimental methods | Best Researcher Award

Dr. Jie Tian is a distinguished Professor at the Institute of Acoustics, Chinese Academy of Science, Beijing, China. He holds a Ph.D. in Automatic Control from Beijing Institute of Technology (2002) and a Bachelor’s degree in Automatic Control from Northwestern Polytechnic University (1995). His primary research focus lies in the fields of underwater information and signal processing and classification & image processing.

๐Ÿ‘จโ€๐ŸŽ“Profile

Scopus

๐ŸŽ“ Early Academic Pursuits

Dr. Tian’s academic journey began at Northwestern Polytechnic University, where he earned his Bachelor’s degree in Automatic Control in 1995. Building on this foundation, he pursued his Ph.D. at Beijing Institute of Technology, specializing in Automatic Control. His studies laid the groundwork for his deep engagement with signal processing and image processing algorithms, disciplines that continue to define his career today.

๐Ÿ’ผ Professional Endeavors

Dr. Tianโ€™s professional career spans over two decades, marked by significant contributions to both academia and research. He is currently a Professor at the Institute of Acoustics, Chinese Academy of Science, where he has worked since 2002. His career trajectory includes a Postdoctoral fellowship and Associate Professorship at the same institution, where he developed theoretical algorithms for image processing and worked extensively on information processing systems. His transition from postdoc to professor reflects his growing influence in his field, particularly in the domain of underwater acoustic communication networks and image classification.

๐Ÿ”ฌ Contributions and Research Focus

Dr. Tianโ€™s research contributions are far-reaching and impactful. His expertise includes underwater information processing, with a particular focus on underwater object classification, and sonar image processing. Notable areas of his work include:

  • Cross-layer routing protocols for underwater acoustic communication networks.
  • Deformable residual networks and transfer learning for underwater object classification in SAS images.
  • Deep neural networks for classification in high-resolution sonar images.

His focus on advanced algorithms such as deep neural networks and SVM-based techniques has helped push forward the frontiers of image classification and signal processing in challenging underwater environments.

๐Ÿง‘โ€๐Ÿซ Teaching Experience

Dr. Tian is not only a researcher but also a dedicated educator. As a Professor, he has mentored countless students and guided the next generation of researchers in the Institute of Acoustics. His expertise in image processing and signal processing provides students with valuable insights into cutting-edge technologies, preparing them for careers in academic research and industry applications.

๐Ÿ”ฎ Legacy and Future Contributions

Dr. Tianโ€™s work has already left a lasting impact on underwater imaging and signal processing. Looking ahead, his future contributions are likely to expand into AI-driven underwater communication systems and real-time processing algorithms, further advancing the practical applications of his research. His continued focus on image processing algorithms and deep learning will undoubtedly lead to more innovative breakthroughs that enhance the capabilities of underwater technologies, benefiting both scientific exploration and practical communication systems.

Publications Top Notes

  • Cross-Layer Routing Protocol Based on Channel Quality for Underwater Acoustic Communication Networks
    Authors: He, J., Tian, J., Pu, Z., Wang, W., Huang, H.
    Journal: Applied Sciences (Switzerland)
    Year: 2024
  • Underwater Object Classification in SAS Images Based on a Deformable Residual Network and Transfer Learning
    Authors: Gong, W., Tian, J., Liu, J., Li, B.
    Journal: Applied Sciences (Switzerland)
    Year: 2023
  • Underwater Object Classification Method Based on Depthwise Separable Convolution Feature Fusion in Sonar Images
    Authors: Gong, W., Tian, J., Liu, J.
    Journal: Applied Sciences (Switzerland)
    Year: 2022
  • Underwater objects classification method in high-resolution sonar images using deep neural network
    Authors: Zhu, K., Tian, J., Huang, H.
    Journal: Shengxue Xuebao/Acta Acustica
    Year: 2019
  • Small Underwater Objects Classification in Multi-View Sonar Images Using the Deep Neural Network
    Authors: Zhu, K., Tian, J., Huang, H.
    Journal: Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument
    Year: 2020