Berthelot Saïd Duvalier Ramlina Vamhindi | Computational Methods | Best Faculty Award

Dr. Berthelot Saïd Duvalier Ramlina Vamhindi | Computational Methods | Best Faculty Award

University of Maroua | Cameroon

Berthelot Saïd Duvalier Ramlina Vamhindi is an accomplished researcher with expertise in chemical physics, astrophysics, and molecular dynamics. With an active academic presence, he has made significant contributions in the fields of polymer research, quantum chemistry, and biomolecular structure. His dedication to scientific advancement is evident through his robust publication record and his focus on nonlinear optical applications and theoretical modeling.

👨‍🎓Profile

Scopus

Orcid

Early Academic Pursuits 🎓

Vamhindi’s academic journey began with a focus on quantum chemistry and astrophysics, where he developed a keen interest in studying the fundamental molecular structures and interactions that govern both chemical reactions and material properties. His curiosity in these domains laid the foundation for his interdisciplinary research, bridging chemical physics with practical applications in pharmaceuticals and polymer science.

Professional Endeavors 💼

Since entering academia, Vamhindi has focused his research on various advanced topics such as nonlinear optical applications, molecular dynamics simulations, and the spectroscopic analysis of organic molecules. His work spans theoretical investigations into dielectric properties and hydrophobic polymers, as well as real-world applications such as drug design for Alzheimer’s and other diseases. His involvement in molecular modeling and ab initio methods showcases his expertise in computational chemistry.

Contributions and Research Focus 🔬

Vamhindi’s research contributions are centered around the electronic structure and spectroscopic properties of complex molecular systems. His most recent work focuses on the hydrophobic properties of nylon 6-phenol resin blends, as well as the investigation of nonlinear optical applications of indole-3-pyruvic acid. His research in polymer blends has significant implications for dielectric applications, while his work on molecular docking contributes to the design of Alzheimer’s drugs.

Impact and Influence 🌍

Vamhindi has made a notable impact within his field with over 70 citations, demonstrating the relevance and importance of his research. His work on quantum chemical investigations and nonlinear optical materials has provided new insights into the behavior and potential of materials used in optoelectronic and pharmaceutical applications. His high-quality contributions, published in renowned journals such as Journal of Polymer Research and Journal of Biomolecular Structure and Dynamics, have garnered recognition and citations in the scientific community.

Academic Cites 📈

With a total of 9 publications and a sum of times cited reaching 69 (as of September 2024), Vamhindi’s research has demonstrated consistent influence in fields such as polymer science, molecular modeling, and quantum chemistry. His H-index of 4 in recent years and 5 in the full publication timeline signifies that his work is increasingly cited and regarded by fellow researchers in his areas of expertise.

Research Skills ⚙️

Vamhindi is proficient in utilizing DFT (Density Functional Theory) and ab initio methods to model and simulate molecular behaviors. His expertise in molecular dynamics and quantum chemical simulations allows for the prediction of nonlinear optical properties and the electronic structure of complex molecules. Additionally, he employs molecular docking techniques to explore drug-receptor interactions, demonstrating his multidisciplinary approach.

Legacy and Future Contributions 🔮

Berthelot Saïd Duvalier Ramlina Vamhindi is poised to leave a lasting impact in the fields of quantum chemistry and nonlinear optics. His continued focus on drug design, material properties, and molecular modeling is likely to drive further innovations in pharmaceuticals and optoelectronics. As his research expands, Vamhindi’s legacy will likely center around the interdisciplinary approach that merges theoretical chemistry with practical, real-world applications, improving both healthcare and technology.

Publications Top Notes

Electronic structure, spectroscopic constants, and transition properties of NaC₀⁺¹/⁻¹ diatomic species: An ab initio investigation
  • Authors: Gouromsa, Y.H., Ramlina Vamhindi, B.S.D., Nsangou, M.
    Journal: Journal of Quantitative Spectroscopy and Radiative Transfer
    Year: 2025
Pressure action on ductility and optoelectronic properties of non-toxic AGeBr₃ (A = Cs, K, Na, Rb) perovskites
  • uthors: Vamhindi, B.S.D.R., Abavare, E.K.K.
    Journal: Solid State Communications
    Year: 2024
Preparation of hydrophobic nylon 6-phenol resin derivative polymer blends for the dielectric application and theoretical evaluation of their hydrophobic property
  • Authors: Vedamurthy, T., Lai, C.H., Vamhindi, B.S.D.R.
    Journal: Journal of Polymer Research
    Year: 2023
Spectroscopic, quantum chemical, molecular docking, and molecular dynamics investigations of hydroxylic indole-3-pyruvic acid: a potent candidate for nonlinear optical applications and Alzheimer’s drug
  • Authors: Koyambo-Konzapa, S.-J., Mbesse Kongbonga, G.Y., Nsangou, M., Franklin Benial, A.M., R, P.
    Journal: Journal of Biomolecular Structure and Dynamics
    Year: 2022
How strongly do Janus all-cis C₆H₆F₆ and C₆H₆Cl₆ bind ions in the gas-phase?
  • Authors: Ramlina Vamhindi, B.S.D., Lai, C.-H., Koyambo-Konzapa, S.-J., Nsangou, M.
    Journal: Journal of Fluorine Chemistry
    Year: 2020

 

David Fouejio | Computational Methods | Best Researcher Award

Prof. David Fouejio | Computational Methods | Best Researcher Award

University of Yaounde I | Cameroon

Pr. David Fouejio is an esteemed academic and researcher currently serving at the Mechanic, Materials, and Complex Structures Laboratory at the University of Yaoundé I, Cameroon. With his extensive expertise in material science, optoelectronics, and nanotechnology, Pr. Fouejio has made significant strides in researching the electronic, optical, and thermodynamic properties of a wide range of materials. His work, which spans organic molecules, pharmaceuticals, and nanomaterials, positions him as a leading figure in his field.

👨‍🎓Profile

Scopus

Orcid

Early Academic Pursuits 🎓

Pr. Fouejio’s journey began in the field of physics, where he laid the foundation for his future academic and research career. He pursued a robust academic path with an emphasis on material characterization, optical materials, and photonics. His early academic years prepared him well for his current research, and his diverse interests reflect his foundational knowledge in both basic physics and cutting-edge technology.

Professional Endeavors 💼

Pr. Fouejio’s research career spans several complex topics including electronic and optoelectronic properties, pharmaceutical applications of nanomaterials, and magnetic properties of materials. He has contributed to advancements in the targeted drug delivery system, specifically through the functionalization of Dihydroartemisinin (DHA) on C60 fullerene or carbon nanotubes (CNT). This area of work highlights his focus on solving real-world healthcare challenges through material science. Furthermore, Pr. Fouejio has explored optical materials used in photochromic polymers, demonstrating his ability to bridge theoretical and applied physics.

Contributions and Research Focus 🔬

Pr. Fouejio’s research spans diverse yet complementary fields such as electrical, optical, optoelectronic, and magnetic properties of materials. His study of photochromic polymers and methyl methacrylate showcases his expertise in nonlinear optical properties. His work on frustration in antiferromagnetic materials and the magnetic properties of Ising ferrimagnets has further solidified his reputation in the condensed matter physics domain. Through his ab initio and DFT calculations, Pr. Fouejio is contributing to the nanotechnology field and pharmaceutical applications.

Impact and Influence 🌍

Pr. Fouejio’s contributions to optical materials and nanotechnology have far-reaching applications, especially in healthcare and photonics. His work on drug delivery systems and materials for optoelectronic devices is advancing the potential for novel therapeutics and innovative technologies. As a referee for high-profile journals, his influence in the academic community has allowed him to shape the direction of research in material characterization and optical materials.

Academic Cites 📈

With 13 published papers, Pr. Fouejio’s work has been recognized and cited by peers globally. His research on optical properties of organic molecules and nanomaterials is particularly notable in the fields of nanotechnology and photonics. His ability to make cross-disciplinary connections is reflected in his growing citation record. Each of his works contributes to a broader scientific dialogue with global impact.

Research Skills 🧠

Pr. Fouejio possesses a versatile skill set in computational methods such as Monte Carlo simulations, ab initio calculations, and DFT simulations. His hands-on expertise in material characterization and his theoretical approach make him an authority in optoelectronics. His research has also extended to pharmaceutical applications and healthcare innovations, where his computational techniques have furthered the understanding of drug delivery systems and nanomaterials.

Teaching Experience 👨‍🏫

As a faculty member in the Department of Physics, Pr. Fouejio has shared his expertise with the next generation of scientists and engineers. His teaching focuses on the fundamentals of physics, material science, and nanotechnology, equipping students with the tools necessary for careers in academia and industry. Through his mentoring, students are not only exposed to theoretical knowledge but also to practical aspects of material characterization and computational modeling.

Legacy and Future Contributions 🌱

Pr. Fouejio’s research continues to shape the future of material science with a focus on nanotechnology and drug delivery systems. As he progresses in his career, the potential for Pr. Fouejio to lead groundbreaking work in optical materials, photonics, and pharmaceutical applications is immense. His continued exploration into nanotechnology and its potential for medical advancements will undoubtedly leave a lasting legacy in the scientific community.

Publications Top Notes

Magnetic and thermodynamic properties of mixed spin-3/2 and spin-3 Ising ferrimagnets on a 2D triangular lattice: Monte Carlo study
  • Authors: D. Fouejio, P. Noudem, S.S. Zekeng
    Journal: Chinese Journal of Physics
    Year: 2024
Electronic, nonlinear optical, UV–vis and NBO analysis of methyl methacrylate for optoelectronic and optical applications: DFT study and impact of conformation
  • Authors: P. Noudem, D. Fouejio, C.D.D. Mveme, F. Tchangnwa Nya, S.S. Zekeng
    Journal: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
    Year: 2023
Structural, electronic and nonlinear optical properties, reactivity and solubility of the drug dihydroartemisinin functionalized on the carbon nanotube
  • Authors: D. Fouejio, Y. Tadjouteu Assatse, R.A. Yossa Kamsi, G.W. Ejuh, J.M.B. Ndjaka
    Journal: Heliyon
    Year: 2023
Impact of doping on the optoelectronic, electronic and nonlinear optical properties and on the reactivity of photochromic polymers containing styrylquinoline fragments: Hartree-Fock and DFT study
  • Authors: P. Noudem, D. Fouejio, C.D.D. Mveme, S.S. Zekeng, J.B. Fankam Fankam
    Journal: Heliyon
    Year: 2022
Hartree-Fock and DFT studies of the optoelectronic, thermodynamic, structural and nonlinear optical properties of photochromic polymers containing styrylquinoline fragments
  • Authors: P. Noudem, D. Fouejio, C.D.D. Mveme, S.S. Zekeng, F. Tchangnwa Nya, G.W. Ejuh
    Journal: Materials Chemistry and Physics
    Year: 2022

 

 

 

Fatima Thabit | Computational Methods | Women Researcher Award

Ms. Fatima Thabit | Computational Methods | Women Researcher Award

Sana’a University | Yemen

Fatima Mohammed Saeed Thabit is an esteemed Instructor in Physics at Sana’a University, Yemen. With an academic career dedicated to advancing theoretical physics, she has made notable contributions to optics and nano-physics. Fatima’s research and expertise are built on her academic background, which includes a Master’s degree in Theoretical Physics and ongoing PhD studies in the same field.

👨‍🎓Profile

Google scholar

Orcid

Early Academic Pursuits 🎓

Fatima’s journey into the world of physics began with her Bachelor’s degree in Physics with a minor in Mathematics from Sana’a University in 2006. She furthered her education with a Master’s degree in Theoretical Physics in 2016, positioning herself as an emerging expert in the field. Currently, she is pursuing her PhD in Theoretical Physics, exploring the depths of this complex and dynamic domain.

Professional Endeavors 💼

As an instructor at Sana’a University, Fatima plays an integral role in shaping the future of aspiring physicists. Her responsibilities include training students, developing practical skills, and teaching a wide array of physics courses, such as electrical circuit analysis, medical physics, and programming. Fatima’s teaching approach fosters an understanding of both theoretical concepts and hands-on experimentation.

Contributions and Research Focus 🔬

Fatima’s research has focused primarily on optics, particularly on beam propagation, optical trapping, and nano-physics. Some of her most notable work involves the study of optical forces exerted on nanodielectric spheres, as well as the behavior of Laguerre-Gaussian beams and Hermite Gaussian beams. Her work has been published in prestigious journals such as the Journal of the Optical Society of America and Applied Optics.

Impact and Influence 🌍

Fatima’s contributions extend beyond academic publications. she has also served as Secretary-editor for the Journal of Sana’a University for Applied Sciences and Technology, playing a pivotal role in supporting the publication process and furthering the academic community’s growth. Through her work, she continues to inspire fellow researchers and students, particularly women in physics, to pursue excellence in science.

Academic Cites 📚

Fatima’s research has garnered recognition and citations from global scholars. Her studies on optical trapping forces and Gaussian beams have helped advance nano-optics and photonics, and her research papers are frequently referenced in scientific circles, including well-regarded journals like J. Opt. Soc. Am. A, Phys. Scr., and Results in Physics.

Research Skills 🧠

With proficiency in advanced tools such as MATLAB, Mathematica, and LaTeX, Fatima demonstrates an outstanding capability in computational modeling, simulation, and data analysis. Her use of cutting-edge research techniques allows her to probe deeper into the theoretical aspects of optics, nanophysics, and photonics, making significant strides in applied research.

Teaching Experience 👩‍🏫

Fatima’s diverse teaching experience includes guiding students through complex theoretical and practical courses in physics and programming. She has taught students in courses ranging from electrical circuits to medical physics, all while maintaining a high standard of education and encouraging students to engage with both practical experiments and theoretical discussions. Fatima also prepares and evaluates practical exams that ensure students gain a comprehensive understanding of key scientific concepts.

Legacy and Future Contributions 🌱

Looking forward, Fatima’s future contributions to theoretical physics and optics are bound to leave a lasting legacy. As she advances in her PhD research, her work will likely inspire future breakthroughs in nanotechnology and photonics, while her teaching will continue to shape the next generation of physicists. Fatima’s growing involvement in artificial intelligence and cutting-edge research methods positions her as a prominent figure in the field.

Publications Top Notes

Calculation of the optical forces exerted on a nano-dielectric sphere induced by a pulsed Laguerre–Gaussian beam
  • Authors: MA Shukri, FM Thabit
    Journal: JOSA A
    Year: 2023
Calculation of trapping optical forces induced by a focused continuous Hermite Gaussian beam on a nano-dielectric spherical particle
  • Authors: MA Shukri, FM Thabit
    Journal: Physica Scripta
    Year: 2024
Propagation of fully and partially coherent flat-topped multi-Gaussian beams through axicons
  • Authors: FM Thabit, AA AlKelly, MA Shukri
    Journal: JOSA A
    Year: 2020
Impact of Gaussian Beam Spot Size on Trapping Forces: Continuous versus Pulsed Beams
  • Authors: M Shukri, F Thabit
    Journal: Sana’a University Journal of Applied Sciences and Technology
    Year: 2024
Trapping of low and high refractive index nano-spherical particles by using a highly focused Laguerre–Gaussian beam
  • Authors: FM Thabit, MA Shukri
    Journal: Applied Optics
    Year: 2024

 

 

Muhammad Zulfiqar | Computational Methods | Best Researcher Award

Prof. Dr. Muhammad Zulfiqar | Computational Methods | Best Researcher Award

University of Sargodha | Pakistan

Dr. Muhammad Zulfiqar is an accomplished physicist specializing in solid-state physics, computational physics, and condensed matter theory. He completed his Ph.D. at Tsinghua University (2014-2019) in the People’s Republic of China, where he focused on tunable conductive and magnetic properties in the doped two-dimensional Platinum Diselenide. Throughout his academic journey, Dr. Zulfiqar has made significant contributions to various fields of materials science, thermodynamics, and quantum transport phenomena. He holds several advanced degrees, including M.Phil. from University of Sargodha and M.Sc. from the University of Punjab, both with first-class distinctions.

👨‍🎓Profile

Google scholar

Scopus

Orcid

Early Academic Pursuits 🎓

Dr. Zulfiqar’s academic journey began with a B.Sc. in Physics and Mathematics at Government College Sargodha, followed by an M.Sc. in Physics from the University of Punjab, where he graduated with first-class honors. His early academic pursuits laid the groundwork for his specialization in condensed matter physics. Driven by his passion for advanced theoretical and computational methods, he continued his academic path, earning his M.Phil. in Physics from the University of Sargodha, once again graduating with first-class recognition. His Ph.D. from Tsinghua University propelled him into the world of cutting-edge research in physics, where he focused on understanding the complex behaviors of low-dimensional materials.

Professional Endeavors 🔬

Dr. Zulfiqar’s professional career is marked by his impressive work in computational physics and his deep engagement with numerical simulations. He has been involved in numerous collaborative projects funded by prestigious bodies such as the Chinese Government and the National Natural Science Foundation of China. His work has extended into exploring electron transport and phonon transport phenomena at the nanoscale. These investigations have led to groundbreaking research into superconductivity in low-dimensional materials and the optimization of solar cell architectures for renewable energy applications.

Contributions and Research Focus 🧑‍🔬

Dr. Zulfiqar’s research has had a profound impact on the study of magnetism in solids and the development of new materials for energy applications. He has extensively studied optical and thermoelectric properties of perovskite compounds, aiming to enhance renewable energy sources. His research also extends to superconductivity and quantum transport phenomena, which are crucial for the development of future electronic devices. Through his innovative research, he explores the mechanical stability and thermal properties of materials like La2Sn2O7 and Ba-based double perovskites, which have significant implications in the fields of photovoltaics and energy harvesting.

Impact and Influence 🌍

Dr. Zulfiqar has made transformative contributions to the fields of condensed matter theory, thermodynamics, and computational physics. His work is highly influential in advancing the understanding of low-dimensional materials, which are at the forefront of modern nanoelectronics and quantum computing. His publications in prestigious journals have helped shape the discourse around energy-efficient devices and nanostructured materials. Through his research, he has provided valuable insights into phonon and electron transport, which are crucial for improving thermoelectric efficiency and designing smart energy systems.

Academic Citations 📚

Dr. Zulfiqar has published 50 research articles in renowned ISI-JCR indexed journals, reflecting his high productivity and the quality of his work. His research is widely cited, making him a significant figure in the field of solid-state physics and material science. The breadth and impact of his publications, including works on thermoelectric properties and solar cell simulations, highlight his prominent position in the academic community.

Research Skills 💻

Dr. Zulfiqar possesses advanced expertise in a range of simulation tools and computational methods. His proficiency in VASP, Quantum Espresso, CASTEP, and other ab-initio codes allows him to model complex quantum phenomena in materials at the atomic level. He is also skilled in Molecular Dynamics simulations, as well as tools like Phonopy, ShengBTE, and Material Studio, enabling him to carry out detailed studies on thermal transport and device simulations. His command over these cutting-edge tools enables him to perform high-level research and provide deep insights into the physical properties of materials.

Teaching Experience 👨‍🏫

Dr. Zulfiqar has contributed to the academic community not only through his research but also through teaching and mentoring the next generation of physicists. While his primary focus has been on research, he has likely been involved in educating and guiding students in computational physics and materials science. His expertise in solid-state physics and thermodynamics positions him as a knowledgeable educator capable of inspiring students in these complex fields.

Awards and Honors 🏆

Dr. Zulfiqar has received numerous awards and scholarships throughout his career, including the prestigious Chinese Government PhD Fellowship and research grants from the National Natural Science Foundation of China. These honors recognize his exceptional contributions to the field of physics and his ongoing pursuit of innovative research in material science, thermoelectrics, and energy applications. These recognitions are a testament to his hard work and significant impact on the scientific community.

Legacy and Future Contributions 🌟

Dr. Zulfiqar’s legacy in solid-state physics and material science is one of excellence and innovation. His contributions to the study of magnetic properties, superconductivity, and energy-efficient materials will continue to shape the future of energy technologies and nanoelectronics. As he moves forward in his career, his research will likely pave the way for the development of cutting-edge devices and advanced materials for applications in renewable energy, quantum computing, and spintronic devices. With his growing influence, Dr. Zulfiqar’s work will continue to inspire the next generation of scientists and engineers working on advanced materials and energy solutions.

Publications Top Notes

Exploring mechanically stable Ba-based double Perovskite oxides for renewable energy: Optoelectronic and thermoelectric properties investigation
  • Authors: Muhammad Fiaz, Fahim Ahmed, Hussein Alrobei, Muhammad Faizan, Shafaat Hussain Mirza, Muhammad Zulfiqar
    Journal: Materials Science in Semiconductor Processing
    Year: 2025
Full solar spectrum energy harvesting with CuInSe2 based photovoltaic cell: Device simulation and impedance spectroscopy analysis
  • Authors: Khalid Riaz, Nargis Bano, Rizwan Ul Hassan, Muhammad Zulfiqar
    Journal: Optics Communications
    Year: 2025
Search for Efficient Absorber Materials from A2B Binary Compounds: A Comprehensive Computational Modeling Approach
  • Authors: Arslan Zulfiqar, Khalid Riaz, Muhammad Zulfiqar, Saif M. H. Qaid, Bandar Ali Al-Asbahi, Muhammad Saqib Arslan, Muhammad Usman, Suming Zeng
    Journal: ACS Applied Electronic Materials
    Year: 2025
Exploring the dopant effects on the structural, magnetic, optoelectronic, and thermoelectric properties of Ba2CaMoO6: A detailed Ab-initio investigation
  • Authors: Muhammad Faizan, Nargis Bano, Muhammad Zulfiqar, Imran Hussain, Shafaat Hussain Mirza, Jun Ni
    Journal: Materials Science in Semiconductor Processing
    Year: 2024
Investigating the impact of band gap engineering on optoelectronic properties of tetragonal MgZrN2 compound: A first principles study
  • Authors: Muhammad Saqib Arslan, A. Alqahtani, Arslan Zulfiqar, Muhammad Zulfiqar
    Journal: Journal of Solid State Chemistry
    Year: 2024

 

Jie Li | Computational Methods | Best Researcher Award

Assoc. Prof. Dr. Jie Li | Computational Methods | Best Researcher Award

Teacher at Chongqing University of Science and Technology, China

Li Jie is an accomplished doctor, associate professor, and master’s supervisor at Shanghai Jiaotong University, where he also serves as a postdoctoral fellow. As the deputy director of the 2011 Collaborative Innovation Center for Smart Security in Chongqing, he leads initiatives in smart neurosurgery and participates actively in various professional committees related to artificial intelligence and smart transportation. An Associate Editor for IEEE Transactions on Emerging Topics in Computational Intelligence, he has contributed significantly to international conferences.

Profile🎓

Early Academic Pursuits🌱

Li Jie began his academic journey with a strong focus on artificial intelligence and smart technologies, laying a solid foundation for his future endeavors. His time at Tsinghua University and later at the University of Rhode Island enriched his understanding and broadened his research perspectives, preparing him for a distinguished career in academia and industry.

Professional Endeavors 💼

As a postdoctoral fellow at Shanghai Jiaotong University, Li Jie has undertaken significant leadership roles, including serving as the deputy director of the 2011 Collaborative Innovation Center for Smart Security in Chongqing. His involvement with the Smart Neurosurgery Group and various professional committees reflects his commitment to advancing healthcare through innovative technology and collaboration.

Contributions and Research Focus 🔍

Li Jie’s research primarily centers on smart security and neurosurgery, where he utilizes artificial intelligence to enhance medical practices. He has hosted 16 funded projects and has published over 40 academic papers in high-impact journals, showcasing his dedication to contributing valuable knowledge to the field.

Impact and Influence 🌍

With a reputation as a thought leader, Li Jie has made significant contributions that have influenced both academia and industry. His role as an Associate Editor for IEEE Transactions on Emerging Topics in Computational Intelligence and participation in various international conferences underscore his influence in shaping research agendas and fostering collaborations.

Academic Citations 📚

Li Jie’s work is widely recognized, as evidenced by his 40 published papers and the acclaim received for his book, “Artificial Intelligence.” His research has garnered citations that highlight its relevance and impact, establishing him as a respected figure in his field.

Technical Skills ⚙️

Possessing a robust set of technical skills, Li Jie excels in areas such as computational intelligence, data analysis, and machine learning. His expertise in securing over 40 invention patents demonstrates his innovative approach and practical application of technology in research.

Teaching Experience 👨‍🏫

As a master’s supervisor and associate professor, Li Jie has mentored numerous students, instilling in them a passion for research and innovation. His teaching methods emphasize practical applications of theory, preparing students for successful careers in technology and science.

Legacy and Future Contributions 🔮

Li Jie’s legacy is marked by his commitment to advancing smart technologies in healthcare. Looking ahead, he aims to expand his research collaborations internationally and engage in interdisciplinary projects, furthering the impact of his work on society and technology. His vision for the future underscores a dedication to innovation that will shape the next generation of researchers and practitioners.

Publication Top Notes📖

Metric learning based multi-branch network for tongue manifestation recognition
  • Authors: Ren, S., Wu, R., Luo, Q., Wang, Y., Li, J.
    Publication Year: 2024
FASCNet: An Edge-Computational Defect Detection Model for Industrial Parts
  • Authors: Li, J., Wu, R., Zhang, S., Chen, Y., Dong, Z.
    Publication Year: 2024
Multi-scale attention-based lightweight network with dilated convolutions for infrared and visible image fusion
  • Authors: Li, F., Zhou, Y., Chen, Y., Dong, Z., Tan, M.
    Publication Year: 2024
A Mixed-Precision Transformer Accelerator With Vector Tiling Systolic Array for License Plate Recognition in Unconstrained Scenarios
  • Authors: Li, J., Yan, D., He, F., Dong, Z., Jiang, M.
    Publication Year: 2024
A novel medical text classification model with Kalman filter for clinical decision making
  • Authors: Li, J., Huang, Q., Ren, S., Deng, B., Qin, Y.

           Publication Year: 2023