Aleksandr Sipatov | Experimental methods | Best Researcher Award

Prof. Aleksandr Sipatov | Experimental methods | Best Researcher Award

Professor at National Technical Univercity “Kharkiv Polytechnic Institute” | Ukraine

Dr. Alexander Yurievich Sipatov is a distinguished Professor in the Metal and Semiconductor Physics Department at the National Technical University “Kharkov Polytechnic Institute” (KPI), Ukraine. Born on March 21, 1957, in Nizhny Novgorod, Russia, Dr. Sipatov has had a long and illustrious career spanning over several decades in the field of semiconductor physics and nanostructures. His work has made notable contributions to the development of quantum effects and the exploration of superconductivity and thermoelectric properties in semiconductor multilayer nanostructures.

👨‍🎓Profile

Google scholar 

Scopus

ORCID

Early Academic Pursuits 🎓

Dr. Sipatov’s academic journey began at the National Technical University “Kharkov Polytechnic Institute” (KPI), where he earned his Engineer-Physicist degree in 1980. He pursued postgraduate studies at KPI, completing his Ph.D. in 1986 and later achieving the title of Doctor of Science in 2007. Between 1995 and 1998, Dr. Sipatov was awarded a Postdoctoral stipend to further hone his expertise and research skills. His academic achievements laid the foundation for a highly successful career in semiconductor physics.

Professional Endeavors 💼

Dr. Sipatov’s professional career at KPI began in 1980 as an Engineer, and his role rapidly evolved over the years. He served as a Junior Researcher from 1983 to 1990, a Researcher from 1990 to 1992, and as a Senior Researcher from 1992 to 1995 and 1998 to 2007. His increasing responsibilities and leadership roles included becoming a Leading Researcher from 2007 to 2012 and the Head of the Technical Cryophysics Department at KPI from 2012 to 2020. Since 2020, he has held the position of Professor at KPI, where he continues to contribute significantly to both teaching and research.

Contributions and Research Focus 🔬

Dr. Sipatov’s research focuses on the growth, structure, and electronic, optic, magnetic, and thermoelectric properties of semiconductor multilayer nanostructures, particularly chalcogenides of elements such as lead (Pb), tin (Sn), bismuth (Bi), europium (Eu), and ytterbium (Yb). His studies have led to several groundbreaking discoveries, including:

  1. Energy Spectrum Quantization in thin films, notably in PbS films and PbS-EuS superlattices, identified by shifts in the photoluminescence edge.
  2. Resonant Tunneling phenomena observed through negative differential resistance in PbS-EuS double barrier tunneling structures.
  3. The discovery of superconductivity in IV-VI superlattices, with Tc values between 3-6 K.

Currently, Dr. Sipatov is investigating the thermoelectric and magnetic properties of semiconductor thin films and nanostructures, which have important applications in energy efficiency and advanced electronics.

Impact and Influence 🌍

Dr. Sipatov’s work has had a profound impact on quantum physics and the field of nanostructures. His findings have broadened the understanding of quantum effects in semiconductors, contributing to advances in quantum technologies and low-temperature physics. Furthermore, his contributions to superconductivity have opened up new avenues for research in quantum computing and energy-efficient technologies. The interdisciplinary nature of his work positions him as a key figure in nanoscience, with direct implications for industries ranging from electronics to energy storage.

Academic Cites 📚

Dr. Sipatov is a highly published researcher with more than 60 publications in peer-reviewed journals, showcasing his dedication to advancing scientific knowledge. His work is indexed in Scopus (ID: 7004596183), highlighting his significant influence and recognition in the scientific community. His research continues to be cited by scholars worldwide, cementing his reputation as a thought leader in semiconductor physics and nanotechnology.

Research Skills 🔧

Dr. Sipatov possesses a broad range of specialized research skills, including:

  • Material Synthesis and Growth of semiconductor multilayer nanostructures.
  • Expertise in quantum effects such as energy spectrum quantization and resonant tunneling.
  • Advanced techniques for studying superconductivity and the magnetic properties of semiconductor materials.
  • Deep understanding of thermoelectric phenomena and their practical applications.

His expertise in low-temperature physics and nanoelectronics places him at the cutting edge of research in these fields.

Teaching Experience 📖

As a Professor at KPI, Dr. Sipatov has dedicated a significant portion of his career to teaching and mentoring the next generation of scientists and engineers. His leadership as the Head of the Technical Cryophysics Department between 2012 and 2020 provided an invaluable platform for the development of young researchers in the field of semiconductor physics. Through his courses and research supervision, Dr. Sipatov has influenced countless students, shaping the future of material science and nanotechnology.

Legacy and Future Contributions 🔮

Dr. Sipatov’s research legacy lies in his innovative contributions to the understanding of quantum effects in semiconductor nanostructures and superconductivity. His work on thermoelectric and magnetic properties holds the potential to revolutionize energy-efficient technologies and next-generation electronics. Moving forward, his future contributions are likely to focus on advanced materials for quantum computing and renewable energy solutions, continuing to drive progress in sustainable technologies and nanoscience.

Publications Top Notes

Interdiffusion in chalcogenide semiconductor superlattice nanostructures
  • Authors: A.Y. Sipatov, L.E. Konotopsky, E. Moroz, V.V. Volobuev
    Journal: Solid State Communications
    Year: 2025

Quantum interference phenomena and electron – electron interaction in topological insulator Bi2Se3 thin polycrystalline films
  • Authors: O.I. Rogachova, O. Pavlosiuk, A.V. Meriuts, K.V. Novak, D. Kaczorowski
    Journal: Thin Solid Films
    Year: 2022

Growth mechanism, structure and thermoelectric properties of thermally evaporated Bi2(Te0.9 Se01)3 thin films
  • Authors: O.I. Rogachova, S. Kryvonohov, A.G. Fedorov, O.N. Nashchekina, K.V. Novak
    Journal: Functional Materials
    Year: 2022

Effect of aging on thermoelectric properties of the Bi2Te3 polycrystals and thin films
  • Authors: O.I. Rogachova, K.V. Novak, A.N. Doroshenko, T.I. Khramova, S.A. Saenko
    Journal: Functional Materials
    Year: 2021

Size effects and thermoelectric properties of Bi0.98Sb0.02 thin films
  • Authors: O.I. Rogachova, K.V. Novak, D.S. Orlova, O.N. Nashchekina, G.V. Lisachuk
    Journal: Journal of Thermoelectricity
    Year: 2020

 

Ahmed A. Aboud | Experimental methods | Best Researcher Award

Assoc. Prof. Dr. Ahmed A. Aboud | Experimental methods | Best Researcher Award

Lecturer in department of Physics, Faculty of Sicence, BSU, Egypt

Dr. Ahmed Abdel-Nagy Aboud Moustafa is a dedicated Lecturer in the Department of Physics at the Faculty of Science, Beni-Suef University (BSU), Egypt. He holds a PhD in Physics, specializing in Surface Antireflection and Protection for Photovoltaic (PV) Systems, from Yerevan State University, Armenia, earned through a full scholarship. His academic journey has been marked by excellence and a strong commitment to advancing physics and material science.

👨‍🎓Profile

Scopus

ORCID

Early Academic Pursuits 🎓

Dr. Aboud’s academic career began with exceptional achievements. He graduated top of his class with a B.Sc. in Physics from Cairo University, Beni-Suef branch, in 2000. He continued to excel in his studies, securing a M.Sc. in Physical Physics in 2008. During his early years, Dr. Aboud’s interest was sparked by thin film deposition and its applications in materials science, which later influenced his research direction.

Professional Endeavors 💼

Dr. Aboud’s professional career includes extensive research experience in thin film deposition, nano-material preparation, and solar energy applications. He has worked on various cutting-edge projects involving spray pyrolysis, chemical vapor deposition, and aerosol-assisted techniques. His work has spanned across several international collaborations, including SolarNex Co. in Pakistan and EMONIX in the USA. His participation in various projects, such as the 10kW rooftop grid-connected PV system, showcases his contribution to sustainable energy technologies.

Contributions and Research Focus 🔬

Dr. Aboud has made substantial contributions to the field of material science and physics, particularly in thin film technologies and nanomaterials. His primary research focus lies in the preparation of high-quality thin films using cost-effective chemical-based techniques like spray pyrolysis, chemical bath deposition, and aerosol-assisted chemical vapor deposition. His work aims to enhance the performance of solar cells and develop novel nano-structured materials for energy applications.

Additionally, his research interests extend to green chemistry, where he explores eco-friendly capping agents for nanomaterial synthesis and the development of dual metal sulfide precursors for solar absorber applications.

Impact and Influence 🌍

Dr. Aboud’s research impact is evident through his numerous publications in renowned journals and his collaborations with international institutions. His work on doped ZnO thin films and photoelectrochemical activity is highly regarded in the field of solar energy and nano-materials. He has also contributed to functional food development, as seen in his work on fortified biscuits with iron nanoparticles. Through his research, Dr. Aboud is influencing sustainable technologies and renewable energy solutions on a global scale.

Academic Citations 📚

With numerous research papers published in prominent journals like Physica Scripta, Journal of Materials Science, and Materials Research Express, Dr. Aboud has achieved significant academic recognition. His work on Ni doping in ZnO films and Cu-doped CdS solar absorbers is widely cited by researchers in the fields of semiconductors and photovoltaics. This high citation count reflects his contributions to advancing material science and energy-efficient technologies.

Research Skills 🧪

Dr. Aboud is proficient in various research methodologies, including:

  • Thin film deposition techniques (spray pyrolysis, chemical bath deposition)
  • Nano-material preparation (chemical bath, microwave techniques, and hot injection)
  • Characterization of materials using state-of-the-art techniques such as:
    • X-ray diffraction (XRD)
    • Atomic force microscopy (AFM)
    • Scanning electron microscopy (SEM)
    • Transmission electron microscopy (TEM)
    • Optical properties, DC conductivity
    • X-ray photoelectron spectroscopy (XPS)
    • Fourier-transform infrared spectroscopy (FT-IR)

These skills have been critical in his ability to contribute to innovative solar technologies, functional food applications, and advanced material development.

Teaching Experience 🏫

As an educator, Dr. Aboud has delivered comprehensive courses to undergraduate and postgraduate students at BSU. His teaching portfolio includes General Physics, Semiconductor Devices, Modern Physics, and Thin Film Physics, among others. Dr. Aboud’s courses emphasize practical knowledge and hands-on experience, aligning with his passion for scientific discovery and education. His graduate-level courses, including Energy Harvesting and Thin Film Technology, inspire the next generation of physicists.

Awards and Honors 🏆

Throughout his career, Dr. Aboud has been recognized with multiple awards and honors. His research excellence has earned him funding from the Egyptian Academy of Science and international collaborations with institutions like Ohio State University. His academic achievements are testament to his commitment to advancing the field of material science and renewable energy technologies.

Legacy and Future Contributions 🔮

Looking forward, Dr. Aboud aims to continue his research on cost-effective thin film techniques for solar energy applications. He also plans to further develop green nanomaterials for sustainable technologies. His future projects will focus on innovating dual-metal sulfide precursors, improving photoelectrochemical systems, and enhancing energy efficiency. Dr. Aboud’s legacy will be one of dedication to science, advancing renewable energy solutions, and fostering scientific education.

Publications Top Notes

Effect of different metallic doping elements on the physical properties of iron oxide thin films

  • Authors: Ahmed A. Aboud, Zinab S. Matar, Mona Mohaseb
    Journal: Physica Scripta
    Year: 2024

Physical properties of La:ZnO thin films prepared at different thicknesses using spray pyrolysis technique

  • Authors: Norah A. Alsaiari, Abanoub A. Awad, Motaz F. Ismail, Ahmed A. Aboud
    Journal: Physica Scripta
    Year: 2024

Tailoring physical properties and electrochemical performance of polyaniline thin films via chemical bath deposition

  • Authors: Mohamed S. Gadallah, Ahmed A. Aboud, H.M. Abd El-Salam
    Journal: Optical Materials
    Year: 2024

Properties of spray pyrolysis deposited Zr-doped ZnO thin films and their UV sensing properties

  • Authors: Aeshah Alasmari, Ramy A. Abd-Elraheem, Ahmed A. Aboud, Motaz Ismail
    Journal: Physica Scripta
    Year: 2024

Investigating the influence of yttrium doping on physical properties of ZnO thin films deposited via spray pyrolysis

  • Authors: Aeshah Alasmari, Abanoub A. Awad, Ahmed A. Aboud
    Journal: Optical Materials
    Year: 2024