Assist. Prof. Dr. Olfa Turki | Experimental methods | Best Researcher Award

Faculty of Sciences , Tunisia

Olfa Turki is an accomplished Assistant Professor at FST with a deep expertise in Physics, particularly in materials science and piezoelectric nanocomposites. With a PhD in Physics and a Master’s in Condensed Matter Physics, Olfa has built a robust academic career. She has contributed extensively to the development of lead-free ceramics and nanocomposites for sensor technologies. Olfa is also an active participant in international research projects and has presented her findings at numerous conferences worldwide. Beyond academics, she is committed to societal development, having been a candidate in municipal elections in Sfax in 2022. Her research bridges the gap between theoretical studies and practical applications in energy storage and sensors.

👨‍🎓Profile

Scopus

ORCID

🎓Education 

Olfa Turki holds a PhD in Physics from 2017, focusing on materials science, specifically piezoelectric nanocomposites. She completed her Master’s Degree in Condensed Matter Physics in 2013, which provided her with a strong foundation in solid-state physics. Her academic journey began with a Bachelor’s Degree in Physics in 2011, where she gained the knowledge that underpins her later research. Olfa’s educational background is complemented by her Baccalaureate in Mathematics from 2008, which further sharpened her analytical and problem-solving skills. Throughout her studies, Olfa has demonstrated a passion for scientific inquiry and a commitment to advancing knowledge in materials physics. Her academic qualifications are paired with hands-on experience in various scientific programs like Origin and Fullprof, enhancing her ability to analyze and present research data effectively. Olfa’s education continues to shape her innovative approach to solving complex scientific problems.

🏢Professional Experience 

Olfa Turki has accumulated a wealth of experience in teaching and research. She currently serves as an Assistant Professor at the Faculty of Sciences of Tunis (FST), where she teaches physics and conducts cutting-edge research. Olfa has also held contractual assistant positions at various institutions, including the Institute of Physics and Engineering (IPEIS) and the Institute of Information and Communication Technologies (ISGI), from 2015 to 2023. In these roles, she gained extensive experience in curriculum development, lecturing, and mentoring students. Olfa’s practical involvement in research is equally impressive, with significant contributions to projects on sensor autonomy and nanocomposite development. She has worked on national and international projects, collaborating with leading scientists in the field. Olfa has presented her work at various prestigious scientific conferences, both orally and in posters, solidifying her position as a respected researcher in her field.

🏆Awards and Honors

Olfa Turki has been recognized for her outstanding contributions to the field of material science and physics. While no formal awards are mentioned, her significant achievements in research, publications, and conference participation place her in high regard within the scientific community. Her work on piezoelectric nanocomposites and their application in sensor technologies has garnered attention, as evidenced by her numerous publications in high-impact journals such as Applied Surface Science and Ceramics International. In addition, Olfa’s involvement in international research programs like the AUF Research Support Program further highlights her scientific stature. Olfa’s role in municipal elections demonstrates her recognition as a leader in both academia and community involvement. Her ability to balance these responsibilities while maintaining a high standard of academic and research excellence showcases her dedication, which is often celebrated by her peers and colleagues.

🌍Research Focus 

Olfa Turki’s research focuses primarily on the development of lead-free ceramics and piezoelectric nanocomposites. Her work aims to improve the dielectric, ferroelectric, and electrocaloric properties of these materials, making them ideal candidates for use in sensor technologies, energy storage, and nanogenerators. Olfa has conducted in-depth studies on the effects of doping and substitution of various elements, such as lanthanides, to enhance the functional properties of ferroelectric ceramics. Her research has a direct application in creating more sustainable and efficient materials, particularly in the realm of green technologies. Moreover, Olfa explores the structural properties and microstructure of nanocomposites, offering innovative approaches for material synthesis and processing. Her recent international collaboration, NAPES, explores the development of nanocomposites for pressure sensors and energy harvesting, positioning her research at the intersection of advanced material science and applied technologies.

🧠Research Skills

Olfa Turki possesses a strong set of research skills that complement her work in materials science. She is proficient in using scientific programs such as Origin and Fullprof, tools that allow her to analyze complex data and model materials’ behavior. Olfa’s expertise in synthesis techniques, particularly sol-gel hydrothermal synthesis, enables her to create high-performance materials like piezoelectric nanocomposites and lead-free ceramics. Her ability to analyze and interpret dielectric, ferroelectric, and piezoelectric properties is a cornerstone of her research. Olfa is also adept in presenting her findings through oral and poster presentations at conferences, enhancing her scientific communication skills. Furthermore, she collaborates well within interdisciplinary teams and takes an active role in mentoring students, promoting research development. Her work is continually evolving, supported by her ability to stay updated on the latest scientific advancements and her commitment to collaborative research across international platforms.

Publications Top Notes

Sol-gel hydrothermal synthesis of lead-free BT nanoparticles for enhanced dielectric properties in PVDF nanocomposites

  • Authors: O. Turki, A. Slimani, S. Boufid, L. Seveyrat, V. Perrin, R. Ben Hassen, H. Khemakhem
    Journal: Applied Surface Science
    Year: 2025

Electrical, ferroelectric and electro-caloric properties of lead-free Ba₀.₈₅Ca₀.₁₅Ti₀.₉₅(Nb₀.₅Yb₀.₅)₀.₀₅O₃ multifunctional ceramic

  • Authors: I. Zouari, A. Dahri, O. Turki, V. Perrin, L. Seveyrat, Z. Sassi, N. Abdelmoula, H. Khemakhem, W. Dimassi
    Journal: Ceramics International
    Year: 2024

The effect of Erbium on physical properties of the BaCaTi(NbYb)O multifunctional ceramic

  • Authors: I. Zouari, O. Turki, L. Seveyrat, Z. Sassi, N. Abdelmoula, H. Khemakhem
    Journal: Applied Physics A
    Year: 2023

Ferroelectric Properties and Electrocaloric Effect in Dy₂O₃ Substitution on Lead‑Free NBT-6BT Ceramic

  • Authors: O. Turki, A. Slimani, I. Zouari, L. Seveyrat, Z. Sassi, H. Khemakhem
    Journal: Journal of Electronic Materials
    Year: 2022

Improved dielectric, ferroelectric, and electrocaloric properties by Yttrium substitution in NBT-6BT based ceramics

  • Authors: O. Turki, F. Benabdallah, L. Seveyrat, Z. Sassi, V. Perrin, H. Khemakhem
    Journal: Applied Physics A
    Year: 2022

 

 

 

Olfa Turki | Experimental methods | Best Researcher Award