Dr. Mohammed A. Al-Seady | Computational Methods | Best Researcher Award
PhD Student at University of Szeged/College of Science and Informatics | Hungary
Mohammed A. Al-Seady is a passionate and emerging materials scientist and computational physicist from Iraq, currently pursuing his PhD in Physics at the University of Szeged, Hungary. He serves as a researcher at the Center for Environmental Research and Studies, University of Babylon. With a Master’s degree in Molecular Sciences focusing on graphene-based materials, Al-Seady is deeply committed to advanced research in two-dimensional nanomaterials, renewable energy applications, and environmental remediation. He has authored 16 peer-reviewed articles, demonstrating his dedication to addressing critical scientific and global sustainability challenges through computational modeling and simulation techniques.
Profile
🎓 Early Academic Pursuits
Mohammed A. Al-Seady began his academic journey at the University of Babylon, where he earned his B.Sc. and M.Sc. degrees in Physics in 2015. His early fascination with nanostructures and materials science, particularly graphene, inspired him to specialize in Molecular Sciences. His academic performance and enthusiasm for scientific inquiry distinguished him early, earning him opportunities to work closely with faculty on graphene synthesis, material characterization, and fundamental physics modeling. These formative years laid a strong theoretical and experimental foundation for his future contributions in nanotechnology and computational materials physics.
💼 Professional Endeavors
Professionally, Al-Seady has held the position of Researcher at the Center for Environmental Research and Studies, University of Babylon, contributing to key environmental technology projects. Simultaneously, he is advancing his doctoral studies in Physics at the University of Szeged in Hungary. His professional path reflects a commitment to international academic collaboration, research excellence, and scientific development across both Iraq and Europe. By balancing his roles in academic research and higher education, he is establishing himself as a versatile scientist working on the intersection of theoretical physics, materials engineering, and green technology innovation.
🔬 Contributions and Research Focus
Mohammed’s research centers on two-dimensional (2D) materials such as graphene and hexagonal boron nitride (h-BN), with applied work in photovoltaics, ionic batteries, dye-sensitized solar cells (DSSCs), and gas adsorption. His work uses computational modeling tools like Gaussian09, Quantum ESPRESSO, and Materials Studio to simulate and optimize the performance of nanostructured materials. By focusing on environmental and energy applications, he contributes solutions to pollution control, energy storage, and solar energy harvesting, creating a bridge between theoretical studies and real-world environmental impact.
🌍 Impact and Influence
With 16 peer-reviewed publications, Mohammed A. Al-Seady’s research is gaining traction in the fields of computational nanomaterials, sustainable energy, and environmental technology. His interdisciplinary work helps shape the scientific discourse on the use of 2D materials in renewable energy and remediation systems. His involvement in both local research institutions and European academic networks demonstrates his ability to act as a scientific connector. Through his publications and collaborations, he is building an international research footprint and influencing future studies on green nanotechnology and computational simulations.
📚 Academic Citations
Al-Seady’s publications are indexed on Scopus and ResearchGate, reflecting a growing citation count and peer engagement. His Scopus author ID (57223213775) shows his inclusion in global citation networks, ensuring the visibility of his contributions to the academic community. Though still in the early stages of his research career, the consistent quality and relevance of his work are leading to increased citations in journals focusing on nanomaterials, computational physics, and clean energy. His scholarship is steadily building a reputation for rigor and applicability.
🧠 Research Skills
Mohammed has developed a robust technical skill set essential for advanced materials research. His proficiency in Python and C programming supports his work in numerical modeling and simulations, while tools like Quantum ESPRESSO and Gaussian09 enable him to perform high-accuracy density functional theory (DFT) calculations. His expertise extends to scientific writing, data interpretation, and computational analysis, making him an asset in both independent and collaborative projects. These skills allow him to design, model, and optimize novel nanomaterials for a wide range of energy and environmental applications.
👨🏫 Teaching Experience
While his profile emphasizes research, Mohammed has contributed to educational activities at the University of Babylon, supporting physics coursework and helping students understand quantum mechanics, computational modeling, and material science concepts. He has supervised undergraduate lab sessions and provided technical mentoring to research interns working on nanotechnology-related projects. His ability to translate complex scientific ideas into accessible educational content highlights his strength as an emerging educator. As he progresses in his career, his teaching contributions are expected to expand alongside his research output.
🔮 Legacy and Future Contributions
Mohammed A. Al-Seady is on a promising trajectory toward becoming a leading figure in computational materials science. His ongoing work aims to push the boundaries of 2D material applications for clean energy, sustainability, and pollution mitigation. With plans to broaden his research collaborations, mentor the next generation of scientists, and contribute to global scientific innovation, Mohammed’s legacy will likely include transformative contributions to green nanotechnology. As his career matures, he is expected to play a pivotal role in shaping scientific solutions for environmental and energy crises worldwide.
Top Noted Publications
Improved light harvesting with graphene/boron nitride nano-heteroislands: a high-efficiency photosensitizer design
-
Authors: Mohammed A. Al-Seady, Hayder M. Abduljalil, Hussein Hakim Abed, Mudar A. Abdullsatar, Rajaa K. Mohammad, Saif M. Hassan, Osamah J. Al-sareji, Mousumi Upadhyay Kahaly
-
Journal: Structural Chemistry
-
Year: 2024
Ethanol properties effects on its reaction with Mo-doped SnO₂ clusters: A gas sensor model
-
Authors: Mudar Ahmed Abdulsattar, Rashid Hashim Jabbar, Mohammed A. Al-Seady
-
Journal: Results in Surfaces and Interfaces
-
Year: 2024
Investigation of Nitrogen Dioxide Gas Sensing Characteristics in Boron Nitride and Aluminum Nitride Nanoribbons: A First Principles Study
-
Authors: Mohammed A. Al-Seady
-
Journal: Library Progress International
-
Year: 2024
Temperature and humidity effects on the acetone gas sensing of pristine and Pd-doped WO₃ clusters: A transition state theory study
-
Authors: Mudar Ahmed Abdulsattar, Hayder M. Abduljalil, Hussein Hakim Abed, Mohammed A. Al‑Seady
-
Journal: Journal of Molecular Modeling
-
Year: 2024
Unveiling the potential of graphene and S-doped graphene nanostructures for toxic gas sensing and solar sensitizer cell devices: insights from DFT calculations
-
Authors: S.A.A. Alsaati, Rabab Saadoon Abdoon, Eman Hamid Hussein, Hayder M. Abduljalil, Rajaa K. Mohammad, Mohammed A. Al-Seady, Ansaf N. Jasim, Noor Al-Huda Saleh, Lynet Allan
-
Journal: Journal of Molecular Modeling
-
Year: 2024