Prof. Dr. Muhammad Zulfiqar | Computational Methods | Best Researcher Award

University of Sargodha | Pakistan

Dr. Muhammad Zulfiqar is an accomplished physicist specializing in solid-state physics, computational physics, and condensed matter theory. He completed his Ph.D. at Tsinghua University (2014-2019) in the People’s Republic of China, where he focused on tunable conductive and magnetic properties in the doped two-dimensional Platinum Diselenide. Throughout his academic journey, Dr. Zulfiqar has made significant contributions to various fields of materials science, thermodynamics, and quantum transport phenomena. He holds several advanced degrees, including M.Phil. from University of Sargodha and M.Sc. from the University of Punjab, both with first-class distinctions.

👨‍🎓Profile

Google scholar

Scopus

Orcid

Early Academic Pursuits 🎓

Dr. Zulfiqar’s academic journey began with a B.Sc. in Physics and Mathematics at Government College Sargodha, followed by an M.Sc. in Physics from the University of Punjab, where he graduated with first-class honors. His early academic pursuits laid the groundwork for his specialization in condensed matter physics. Driven by his passion for advanced theoretical and computational methods, he continued his academic path, earning his M.Phil. in Physics from the University of Sargodha, once again graduating with first-class recognition. His Ph.D. from Tsinghua University propelled him into the world of cutting-edge research in physics, where he focused on understanding the complex behaviors of low-dimensional materials.

Professional Endeavors 🔬

Dr. Zulfiqar’s professional career is marked by his impressive work in computational physics and his deep engagement with numerical simulations. He has been involved in numerous collaborative projects funded by prestigious bodies such as the Chinese Government and the National Natural Science Foundation of China. His work has extended into exploring electron transport and phonon transport phenomena at the nanoscale. These investigations have led to groundbreaking research into superconductivity in low-dimensional materials and the optimization of solar cell architectures for renewable energy applications.

Contributions and Research Focus 🧑‍🔬

Dr. Zulfiqar’s research has had a profound impact on the study of magnetism in solids and the development of new materials for energy applications. He has extensively studied optical and thermoelectric properties of perovskite compounds, aiming to enhance renewable energy sources. His research also extends to superconductivity and quantum transport phenomena, which are crucial for the development of future electronic devices. Through his innovative research, he explores the mechanical stability and thermal properties of materials like La2Sn2O7 and Ba-based double perovskites, which have significant implications in the fields of photovoltaics and energy harvesting.

Impact and Influence 🌍

Dr. Zulfiqar has made transformative contributions to the fields of condensed matter theory, thermodynamics, and computational physics. His work is highly influential in advancing the understanding of low-dimensional materials, which are at the forefront of modern nanoelectronics and quantum computing. His publications in prestigious journals have helped shape the discourse around energy-efficient devices and nanostructured materials. Through his research, he has provided valuable insights into phonon and electron transport, which are crucial for improving thermoelectric efficiency and designing smart energy systems.

Academic Citations 📚

Dr. Zulfiqar has published 50 research articles in renowned ISI-JCR indexed journals, reflecting his high productivity and the quality of his work. His research is widely cited, making him a significant figure in the field of solid-state physics and material science. The breadth and impact of his publications, including works on thermoelectric properties and solar cell simulations, highlight his prominent position in the academic community.

Research Skills 💻

Dr. Zulfiqar possesses advanced expertise in a range of simulation tools and computational methods. His proficiency in VASP, Quantum Espresso, CASTEP, and other ab-initio codes allows him to model complex quantum phenomena in materials at the atomic level. He is also skilled in Molecular Dynamics simulations, as well as tools like Phonopy, ShengBTE, and Material Studio, enabling him to carry out detailed studies on thermal transport and device simulations. His command over these cutting-edge tools enables him to perform high-level research and provide deep insights into the physical properties of materials.

Teaching Experience 👨‍🏫

Dr. Zulfiqar has contributed to the academic community not only through his research but also through teaching and mentoring the next generation of physicists. While his primary focus has been on research, he has likely been involved in educating and guiding students in computational physics and materials science. His expertise in solid-state physics and thermodynamics positions him as a knowledgeable educator capable of inspiring students in these complex fields.

Awards and Honors 🏆

Dr. Zulfiqar has received numerous awards and scholarships throughout his career, including the prestigious Chinese Government PhD Fellowship and research grants from the National Natural Science Foundation of China. These honors recognize his exceptional contributions to the field of physics and his ongoing pursuit of innovative research in material science, thermoelectrics, and energy applications. These recognitions are a testament to his hard work and significant impact on the scientific community.

Legacy and Future Contributions 🌟

Dr. Zulfiqar’s legacy in solid-state physics and material science is one of excellence and innovation. His contributions to the study of magnetic properties, superconductivity, and energy-efficient materials will continue to shape the future of energy technologies and nanoelectronics. As he moves forward in his career, his research will likely pave the way for the development of cutting-edge devices and advanced materials for applications in renewable energy, quantum computing, and spintronic devices. With his growing influence, Dr. Zulfiqar’s work will continue to inspire the next generation of scientists and engineers working on advanced materials and energy solutions.

Publications Top Notes

Exploring mechanically stable Ba-based double Perovskite oxides for renewable energy: Optoelectronic and thermoelectric properties investigation
  • Authors: Muhammad Fiaz, Fahim Ahmed, Hussein Alrobei, Muhammad Faizan, Shafaat Hussain Mirza, Muhammad Zulfiqar
    Journal: Materials Science in Semiconductor Processing
    Year: 2025
Full solar spectrum energy harvesting with CuInSe2 based photovoltaic cell: Device simulation and impedance spectroscopy analysis
  • Authors: Khalid Riaz, Nargis Bano, Rizwan Ul Hassan, Muhammad Zulfiqar
    Journal: Optics Communications
    Year: 2025
Search for Efficient Absorber Materials from A2B Binary Compounds: A Comprehensive Computational Modeling Approach
  • Authors: Arslan Zulfiqar, Khalid Riaz, Muhammad Zulfiqar, Saif M. H. Qaid, Bandar Ali Al-Asbahi, Muhammad Saqib Arslan, Muhammad Usman, Suming Zeng
    Journal: ACS Applied Electronic Materials
    Year: 2025
Exploring the dopant effects on the structural, magnetic, optoelectronic, and thermoelectric properties of Ba2CaMoO6: A detailed Ab-initio investigation
  • Authors: Muhammad Faizan, Nargis Bano, Muhammad Zulfiqar, Imran Hussain, Shafaat Hussain Mirza, Jun Ni
    Journal: Materials Science in Semiconductor Processing
    Year: 2024
Investigating the impact of band gap engineering on optoelectronic properties of tetragonal MgZrN2 compound: A first principles study
  • Authors: Muhammad Saqib Arslan, A. Alqahtani, Arslan Zulfiqar, Muhammad Zulfiqar
    Journal: Journal of Solid State Chemistry
    Year: 2024

 

Muhammad Zulfiqar | Computational Methods | Best Researcher Award